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The Potential of Salivary Lipid-Based
Cannabis-Responsive Biomarkers to Evaluate Medical
Cannabis Treatment in Children with Autism
Spectrum Disorder
Michael Siani-Rose, Robert McKee, Stephany Cox, Bonni Goldstein, Donald Abrams, Myiesha Taylor, and Itzhak Kurek*

Abstract
Introduction: Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental conditions af-
fecting social communication and social interaction. Medical cannabis (MC) treatment shows promising results
as an approach to reduce behavioral difficulties, as determined mainly by subjective observations. We have recently
shown the potential of cannabis-responsive biomarkers detected in saliva of children with ASD to objectively quan-
tify the impact of successful MC treatment using a metabolomics approach. Since the pathology of ASD is asso-
ciated with abnormal lipid metabolism, we used lipidomics on the same samples to (1) expand the repertoire
of cannabis-responsive biomarkers and (2) provide preliminary insight into the role of MC on lipid metabolism.
Materials and Methods: Saliva samples collected from children with ASD (n = 15) treated with MC (both before
and at the time of maximal impact of treatment) and an age-matched group of typically developing (TD) children
(n = 9) were subjected to untargeted lipidomics. The study was observational. Each child from the ASD group was
receiving a unique individualized MC treatment regimen using off-the-shelf products as permitted by California
law under physician supervision for at least 1 year. Doses of tetrahydrocannabinol (THC) ranged from 0.05 to
50 mg and cannabidiol (CBD) from 7.5 to 200 mg per treatment. The ASD group was evaluated for signs of im-
provement using parental brief Likert scale surveys.
Results: Twenty-two potential lipid-based cannabis-responsive biomarkers exhibiting a shift toward the TD
physiological levels in children with ASD after MC treatment were identified. Members from all five lipid sub-
classes known to be present in saliva were characterized. Preliminary lipid association network analysis suggests
involvement of two subnetworks previously linked to (1) inflammation and/or redox regulation and (2) oxidative
stress. The significant changes in sphingomyelin in this study and in N-acetyl-aspartate (NAA) previously detected
in the metabolomics analysis of the same saliva samples may indicate a role of MC in neuron function.
Conclusions: Our findings suggest that lipid metabolites in saliva can potentially serve as cannabis-responsive
biomarkers and objectively quantify the impact of MC treatment, and indicate a possible mechanism of action for
MC. This preliminary study requires further investigation with a larger population and appropriate clinical trial
monitoring.
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Introduction
Autism spectrum disorder (ASD) is characterized as a
set of social interaction and communication disorders
with defined stereotyped patterns of behavior.1 As
such, both screening and evaluation of treatment rely

on the observation of ASD characteristics, including
social interaction, language and communication defi-
cits, and repetitive behaviors.2 This subjective type of
diagnosis is highly dependent on the expertise of a qual-
ified clinician (developmental pediatrician, neurologist
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or psychologist) and on the communication abilities of
the child,3 and does not objectively assess the impact
of the treatment or the underlying pathophysiology
of ASD.

Organelle morphology and cellular metabolism such as
mitochondria dysfunction,4 altered lipid signaling and
metabolism,5 neuroinflammation,6 and oxidative stress7

have been linked with the pathophysiology of ASD. For
example, abnormalities in mitochondria morphology8

and mitochondria-endoplasmic reticulum contact sites
(MERCS) that regulate lipid signaling and metabolism
through physical and functional interactions9 are associ-
ated with ASD, Parkinson’s disease (PD), Alzheimer’s
disease (AD), and amyloid lateral sclerosis (ALS).

Lipid homeostasis is essential for maintaining proper
structure and function of the central nervous system
(CNS).10 On a dry weight basis, *50–60% of the
brain is lipids, including phospholipids, sphingolipids,
and cholesterol, providing cell–cell interaction, cell ad-
hesion and migration at the intercellular level, and
membrane structure and fluidity, and signaling at the
intracellular level. Lipid-based signaling includes
sphingolipids, a competitive antagonist of the cannabi-
noid receptor 1 (CB1)11; lyso-platelet-activating factor
(Lyso-PAF) to mediate inflammation response12; and
the fatty acid (FA) amide/endocannabinoid linoleoyl
ethanolamide (LEA), which activates the peroxisome
proliferator-activated receptor alpha (PPARa) and
weakly binds to CB1 and CB2.13

Aberrant lipid metabolism is well documented and
highly linked with ASD,5,14 and impaired lipid profiles
of arachidonic acid (AA), eicosapentaenoic acid (EPA),
and docosahexaenoic acid (DHA) were found in pa-
tients with ASD and in ASD animal models. This path-
ophysiology can be characterized by increased lipid
peroxidation accompanied by decreased antioxidant
capacity in which membrane phospholipids are the
main target, resulting in neuronal dysfunction.

Strong linkage between lipid metabolic profiles and
abnormalities of mitochondria structure and func-
tion, MERCS structure and contents, and ASD suggests
lipids may be utilized as metabolic biomarkers to objec-
tively evaluate the impact of treatment on the behavior
and pathophysiology of ASD, but would require an in-
vasive diagnostic procedure.8

Lipidomics is a rapidly growing subfield of metabo-
lomics in which the products of lipid metabolism are
analyzed and characterized to determine their function
and provide insight into the physiology and pathophys-
iology of biological processes.15,16 Untargeted lipido-

mics generates lipid profiles that detect and analyze
in an unbiased approach as many lipids as possible be-
tween cohorts, treatment, and/or time points. This type
of fingerprinting of lipid changes can indicate the im-
pact of treatment on pathophysiological disorders.

The recent progress in extraction, separation, and
detection techniques advanced saliva as a noninvasive
diagnostic biofluid for lipidomics. Saliva is a complex
fluid containing hydrophilic and hydrophobic metabo-
lites that correlate well with plasma.15 Metabolite con-
centrations in saliva are directly affected by both
genetics and environmental factors such as gender,
medical condition, emotional state, and physical activ-
ity.17 FAs, glycerolipids, phospholipids, sphingolipids,
and sterol lipids are the five major lipid groups in sa-
liva, with documented abnormal content and composi-
tion in patients with diagnoses such as cystic fibrosis
and Sjogren’s syndrome.

Medical cannabis (MC) treatment has shown prom-
ising results in effectively treating children with ASD
using a single cannabinoid, dronabinol, the synthetic
form of delta-9-tetrahydrocannabinol (Delta 9 THC),18

and whole plant extracts that contain tetrahydrocan-
nabinol (THC) and cannabidiol (CBD).19 However,
the limitation of behavioral surveys and the lack of pha-
rmacokinetic and pharmacodynamic data in a popula-
tion with marked heterogeneity, such as ASD, often
result in inconclusive findings and suggest the need
for larger sample sizes.

Recently, we have demonstrated the potential of
pharmacometabolomics-based cannabis-responsive
biomarkers to objectively quantify the impact of MC
treatment in 15 children with ASD in an observational
evaluation.20 Using untargeted lipidomics, we ex-
panded the discovery of cannabis-responsive biomark-
ers to additional specific subclasses of lipid biomarkers.
Our goals for this investigation were to (1) provide ad-
ditional lipid-based data to support the concept that
cannabis-responsive biomarkers can objectively quan-
tify the impact of MC treatment and (2) demonstrate
the importance of lipid-based cannabis-responsive bio-
markers to provide insight into the mechanism of ac-
tion (MOA) of active cannabinoids on symptoms of
ASD.

Materials and Methods
Detailed descriptions, including participants, study de-
sign, data analysis, and behavioral evaluation, were pre-
viously described in Siani-Rose et al.20 Only a brief
description is provided below.
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Participants
Ethical approval for an observational study of the ASD
group, ages 6–12, treated with MC for at least 1 year
and the age-matched typically developing (TD)
group, was obtained from the Institutional Review
Board, Ethical and Independent Review Services (ref.
20114-01X). Consent was obtained from parents of
all participating children and assent was obtained
from children in the TD control group.

ASD group participants were recruited through Canna-
Centers Wellness & Education (Lawndale, CA) or Whole
Plant Access for Autism (WPA4A, a 501c3 nonprofit
company, Canyon Lake, CA). Participants were diagnosed
by a qualified medical or behavioral health clinician, and
treated with MC supervised by physician, as permitted
by California law, with doses up to three times per day.

The inclusion criteria for the ASD group were as
follows: (1) ASD diagnosed by a qualified medical or
behavioral health clinician (e.g., psychologist, psychia-
trist, or pediatrician); (2) MC treatment under physi-
cian supervision; (3) age between 6 and 12; and (4)
ability to donate saliva without discomfort using the
passive drool method and providing up to four sam-
ples. The exclusion criteria were as follows: (1) children
who require cannabis more frequently than every 8 h;
(2) traumatic brain injury with any known cognitive
consequence or loss of consciousness for more than
5 min; and (3) diagnosed with epilepsy.

Participants in the TD group were recruited through
a San Francisco online parent group and the inclusion
criteria were as follows: (1) no special education needs
and (2) no individual or immediate family member di-
agnosed with developmental disabilities.

Study design
The ASD group was not treated with MC for at least 8 h
before the study, and avoided high sugar, acid and caffeine
content 1 h before saliva collection (Fig. 1, Supplementary
Fig. S1). Saliva samples were collected (Salimetrics, Carls-
bad, CA) using the Passive Drool Collection Kit in the
morning before MC treatment (‘‘PRE’’) and when treat-
ment reached maximal impact according to parents,
about 90 min later (‘‘PEAK’’). TD group provided one sa-
liva sample in the morning. A detailed description of the
study design is provided in Supplementary Data and in
Siani-Rose et al.20

Untargeted metabolic profiling
of lipids (lipidomics)
Saliva samples were collected and immediately stored
temporarily (up to 24 h) at �20�C, and then at �80�C.

Lipidomics was performed using rapid resolution
liquid chromatography–time-of-flight-mass spectrom-
etry by Human Metabolome Technologies, Inc.
(HMT, Tsuruoka, Japan) and processed as previously
described.20

Briefly, supernatant of centrifuged (2,300 · g, 4�C,
5 min) samples (60 lL) and 4 lM internal standards
(40 lL Milli-Q water and 300 lL methanol) were des-
iccated, resuspended (200 lL of 50% isopropanol and
Milli-Q water), and immediately analyzed using Agi-
lent 1200 series RRLC system SL (Agilent Technolo-
gies, Inc., Santa Clara, CA) and ODS column, 2 ·
50 mm, 2 lm (Agilent Technologies, Inc.). Peak ex-
traction, normalization for migration time shift and
intensity, difference detection, and clustering visualiza-
tion were conducted using automatic integration soft-
ware MasterHands ver. 2.18.0.1 developed at Keio
University developed by Sugimoto et al.21

Data analysis
To identify potential lipidomics-based cannabis-
responsive biomarkers in saliva, we: (1) identify metabo-
lites that change [(PEAK � PRE)/PRE] using Count-
PatientDiffUpDowns algorithm; (2) select all metabolites
that exhibit twofold change in 70% of the children
with ASD; (3) sort by calculating the impact of MC
treatment using the number of standard deviation
(SDEV; z-scores) against the metabolite’s mean value
in TD control group using the ComparePatientTo-
Neurotypic algorithm; (4) select all potential cannabis-
responsive biomarkers showing beneficial impact of
MC treatment, namely values > 2 or �2 at PRE that
changed to values lesser than 1 or �1 at PEAK; and
(5) determine statistical significance at p < 0.05 using
paired t-test analysis.

Both CountPatientDiffUpDowns and Compare-
PatientToNeurotypic algorithms were developed by
Cannformatics, Inc. (San Francisco, CA), and previ-
ously described in Siani-Rose et al.20

Parents of the ASD group and TD control group
completed standardized rating forms about their
child’s social, emotional, and behavioral functioning:
The Adaptive Behavior Assessment System, Third
Edition (ABAS-3)22; Behavior Assessment System for
Children, Third Edition (BASC-3)23; and Social
Responsiveness Scale, Second Edition (SRS-2).24

The ASD group also completed brief Likert scale
surveys capturing observational parent report of fre-
quency and/or severity of pre-identified behaviors
and/or social-emotional functioning at time points
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corresponding to saliva collection (PRE and PEAK) to
assess the impact of MC treatment. A summary of stan-
dardized and observational behavioral ratings is de-
scribed briefly in the Supplementary Data and in
detail in Siani-Rose et al.20

Lipid-lipid interaction and cannabinoid-lipid interac-
tion in response to MC treatment at PRE and PEAK MC
treatment were determined by lipid association network,
based on the correlation analysis of all lipids (n = 22) de-
scribed in Table 1. z-Scores of the potential cannabis-
responsive biomarkers were obtained by calculating
the number of SDEVs of PRE and PEAK against the me-
tabolite’s mean value in the TD control group.

The absolute difference between the PRE z-score
measurement and the PEAK z-score measurement for
each participant was calculated using the Microsoft
excel formula ‘‘ = IF(pre > post, Min(pre,post) - Max(-
pre,post), Max(pre,post) - Min(pre,post)).’’ This for-
mula measures absolute differences from lower
z-score to a higher z-score. Results, including Šidák
correction, were analyzed using Wizard 2 Version
2.0.9 (256) (Evan Miller, Chicago, IL).

Correlation between biomarkers was carried out
with Wizard 2 using Pearson correlation and adjusting
the p-value to account for the multiple comparisons
through the Šidák correction, a more exact version of
the Bonferroni correction.25 The comparison consisted
of 22 biomarkers, resulting in 231 comparisons need-
ing adjustment. Correlation between biomarkers and
cannabinoids present without potency values was car-
ried out with Wizard 2 using Pearson correlation and
adjusting the p-value to account for the multiple com-
parisons through the Šidák correction. The compari-
son consisted of 22 biomarkers compared to 6
cannabinoids, resulting in 132 comparisons needing
adjustment.

Results
We previously described the ASD group participants,
treatment and demographics, and TD group partici-
pants and demographics in detail.20 A summary of
the participants is provided in Supplementary Data.
Briefly, the average age for the ASD and TD groups
was 9.4 and 9.3 years, respectively. All children in the

Table 1. Classification of Salivary Potential Lipid Cannabis-Responsive Biomarkers

Potential cannabis-
responsive biomarker n p Class/subclass

Metabolite distribution (by class)

Total lipids
(n5100), %

Potential
cannabis-

responsive
biomarkers
(n522), %

Statistically
significant

(p < 0.05) potential
cannabis-responsive

biomarkers (n510), %

FA(17:1)-1 11 0.054 FA/MUFA 58 40 40
FA(17:1)-2 10 0.058
11-Eicosenoic acid 15 0.053
Linoleic acid 15 0.334
DHA 14 0.041 FA/PUFA
15(S)-HETE-2 14 0.466
LEA 15 0.023 FA/Endocannabinoid
Palmitoyl-carnitine 15 0.014 FA/LCAC
Oleoyl-carnitine 10 0.013
LPC(18:0) 15 0.085 Phospholipids 26 23 20
LPE(18:1)-1 15 0.067
Lyso-PPC 15 0.112
LPS(18:0) 14 0.038
Lyso-PAF (16:0) 14 0.047
Sphingosine(d20:1)-2 10 0.059 Sphingolipids 12 23 30
Sphingosine(d18:1) 13 0.024
Sphingomyelin(d18:1/16:0)-1 13 0.023
Sphingomyelin(d18:1/18:0)-1 15 0.012
Sphinganine 13 0.057
Trilaurin-1 10 0.422 Glycerolipids 3 9 0
Trilaurin-3 12 0.390
Cholesterol sulfate 15 0.014 Sterol lipids 1 5 10

Salivary lipids were classified according to Fahy et al.26 Potential lipid cannabis-responsive biomarkers exhibiting statistically significant changes in
the study are in italics.

15(S)-HETE-2, 15-hydroxyeicosatetraenoic acid; DHA, docosahexaenoic acid; FA, fatty acid; LCAC, long-chain acylcarnitine; LEA, linoleoyl ethanola-
mide; LPC(18:0), lysophosphatidylcholine; LPE(18:1)-1, lysophosphatidylethanolamine-1; LPS(18:0), lysophosphatidylserine; Lyso-PAF, lyso-platelet-
activating factor; Lyso-PPC, lysophosphatidylcholine; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.
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ASD group were under long-term MC treatment for
over a year. Eighty percent of the children with ASD
were treated with products containing THC (0.05–
50 mg per treatment), with or without tetrahydrocan-
nabinolic acid (THCA); and 67% with products con-
taining CBD (7.5–200 mg per treatment), with or
without cannabidiolic acid (CBDA). The majority
(60%) was treated twice per day.

The ASD symptoms were confirmed by parent rat-
ings (SRS-2), and improvement in clinical symptoms
in response to MC treatment was confirmed using par-
ent observational surveys completed at PRE and PEAK.
TD group did not exhibit clinically significant symp-
toms consistent with ASD.

Overall impact of MC on the lipid levels
of children with ASD
Untargeted lipidomics of two saliva samples collected
from children with ASD (n = 15) at PRE and PEAK
and one saliva sample from TD group (n = 9) detected
145 metabolites, in which 100 were classified as lipids
and an additional 6 as hydrophobic metabolites, in-
cluding cortisone, piperine, and riboflavin, described
in Supplementary Table S1 (Siani-Rose et al.20).
Using CountPatientDiffUpDowns and ComparePa-
tientToNeurotypic algorithms, we identified in our
dataset 22 potential lipid-based ASD cannabis-
responsive biomarkers, of which 10 (46%) exhibited
significant change ( p < 0.05) (Table 1). Each of these

22 potential biomarkers was identified in 10–15 chil-
dren with ASD, giving a total of 293 data points.

For each subject with ASD, z-score represents the
number of SDEVs of the biomarker levels above or
below the mean value of the TD group. Per Figure 1,
the z-score range – 0.5 SDEV (dark blue) increased
from 13% of lipid metabolites at PRE to 31% at
PEAK. For the z-score range beyond 4 SDEVS (red),
a decrease from 18% PRE to 5% PEAK was observed.
In aggregate, this indicates an overall tightening toward
the TD physiologic range with MC treatment. The
overall change represents the impact of MC to drive
potential lipid cannabis-responsive biomarkers toward
the TD physiological levels ( – 0.5 SDEV).

All the identified 100 lipid metabolites were grouped
into 5 lipid classes/subclasses according to Fahy et al.26:
(1) FAs (58%); (2) phospholipids (26%); (3) sphingoli-
pids (12%); (4) glycerolipids (3%); and sterol lipids
(1%) (Table 1).

The 22 potential lipid-based cannabis-responsive
biomarkers were detected in all 5 lipid classes/
subclasses described above with 4 dominant groups:
(1) FAs (40%); (2) phospholipids (23%); (3) sphingoli-
pids (23%); and (4) sterol lipids (5%). Among the po-
tential lipid-based cannabis-responsive biomarkers
exhibiting statistically significant changes ( p < 0.05),
the distribution was as follows: (1) FAs (40%), (2)
phospholipids (20%), (3) sphingolipids (30%), and
(4) sterol lipids (10%).

FIG. 1. Overall effect of MC treatment on z-score values of potential cannabis-responsive biomarkers.
Proportion of z-score values at PRE and PEAK is indicated in dark blue ( – 0.5 SDEV) and light blue ( – 1.0
SDEV) considered physiological range, while dark red (less than �0.4 or greater than + 0.4 SDEV) is
significantly out of physiological range determined by the calculated value for TD group. MC, medical
cannabis; SDEV, standard deviation; TD, typically developing.
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The comparison between total lipids (metabolite
distribution column 1, Table 1) and the statistically sig-
nificant potential cannabis-responsive biomarkers
(metabolite distribution column 3, Table 1) suggests
that sphingolipids (12–30%) and sterol lipids (1–10%)
respond favorably to MC treatment.

Impact of MC on different classes/subclasses
of lipids
Within the statistical limitation of the small sample size
in this study, we considered (1) physiological range:�2
SDEV > z-score < 2 SDEV and (2) significant: �4
SDEV < z-score > 4 SDEV.

Sphingolipids
Sphingolipids are a structurally heterogeneous class of
lipids that are highly abundant in the CNS and in-
volved in membrane structure, signaling, regulation,
inflammation, neurodegeneration, and CNS develop-
ment.27 In this study, we identified five sphingolipid
potential cannabis-responsive biomarkers (Table 1).
As shown in Figure 2, six subjects (A2, A8, A13, A15,
A16, and A18) exhibited high levels ( > 2 SDEV) of
four or five potential cannabis-responsive biomarkers
at PRE, while subjects A1 and A3 exhibited low levels
(less than �2 SDEV) of sphinganine (SPG). MC treat-
ment reduced the levels of potential cannabis-
responsive biomarkers in 94% of subjects at PEAK,
but did not affect subject A11’s high levels of SPG
and sphingosine (d18:1).

Three sphingolipids [sphingosine (d18:1), sphingo-
myelin (d18:1/16:0)-1, and sphingomyelin (d18:1/
18:0)-1] exhibited a significant decrease in response
to MC treatment ( p < 0.05) in 46% of participants.
MC treatment also slightly increased the low levels of
SPG in subjects A1 and A3. In combination, this indi-
cates a unique regulatory impact of MC in which bio-
marker levels increase or decrease toward TD
physiological levels at PEAK.

Phospholipids
Phospholipids are a highly abundant diverse amphi-
philic component of the cell membrane that facilitate
transport and storage of lipids and are involved in sig-
nal transduction.28 Five members of the phospholipid
class were identified in this study as potential cannabis-
responsive biomarkers, including lysophosphatidylser-
ine [LPS(18:0)] and LysoPAF(16:0), which both exhibit
statistically significant changes in response to MC

treatment (Table 1). At PRE, high levels above TD
physiological range (3–31 SDEV) in most of the phos-
pholipids were observed in three subjects (A2, A16, and
A18), while high levels of one or two phospholipids
were detected in six additional subjects (A6, A8, A9,
A13, A15, and A17) (Fig. 3).

Lower levels (below the TD physiological range, but
greater than �2 SDEV) were detected in 88% of all the
potential biomarkers in the additional six subjects (A1,
A3, A5, A11, A12, and A14), with the exception of
lysophosphatidylethanolamine-1 [LPE(18:1)-1] and
lysophosphatidylcholine (Lyso-PPC) in subject A11
and LPS(18:0) in A14. MC treatment at PEAK shifted
subjects A2, A6, A8, A15, A16, A17, and A18 toward
TD physiological levels, while subject A13 exhibited
significantly increased LPS(18:0) and Lyso-PPC.
PEAK levels in subjects A1, A3, A5, A11, A12, and
A14 remained low within the TD physiological levels.

Thus, those with PRE levels within the TD physio-
logical levels remained there. Only potential phospho-
lipid cannabis-responsive biomarkers above or below
physiological levels (3–31 SDEV) at PRE shifted into
the TD physiological range at PEAK.

Fatty acids
FAs, the building blocks of lipids, are a major compo-
nent of saliva.17 We identified nine potential cannabis-
responsive biomarkers that are monounsaturated fatty
acids (MUFAs), polyunsaturated fatty acids (PUFAs),
polyunsaturated fatty acylethanolamine (LEA), and
two long-chain acylcarnitine (LCAC) (Table 1).

High levels of palmitoyl-carnitine (light blue; 2–23
SDEV) and oleoyl-carnitine (dark blue; 3–16 SDEV)
detected at PRE in 47% of subjects (A2, A8, A9, A13,
A15, A16, and A18) were significantly reduced
( p = 0.014 and p = 0.013, respectively) at PEAK to TD
physiological levels in six subjects (A8, A9, A15, A16,
and A18) (Fig. 4). They were reduced, but remained
slightly high (bellow 3 SDEV) in both subjects A2
and A13 (oleoyl-carnitine only). Subject A11 showed
a slight increase in the levels of palmitoyl-carnitine at
PEAK, from TD physiological levels to 2.9 SDEV.

11-Eicosenoic acid (orange), linoleic acid (rust), and
DHA (pink) exhibited a similar pattern of high levels at
PRE in subjects A2, A15, A16, and A18 ranging from
2 to 27 SDEV. MC treatment effectively reduced 11-
eicosenoic acid levels in all subjects at PEAK. The lino-
leic acid ethanolamide-conjugated derivative, LEA,
detected in high levels in subjects A13, A15, A16, and
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FIG. 2. Effect of MC treatment on z-score values of potential sphingolipid class of cannabis-responsive
biomarkers. Changes in SDEV units detected in each child with ASD PRE (upper panel) and PEAK (lower
panel) medical cannabis treatment are shown. Dashed red lines indicate – 2 SDEV units from the average of
the TD group. ASD, autism spectrum disorder.
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FIG. 3. Effect of MC treatment on z-score values of potential phospholipid class of cannabis-responsive
biomarkers. Changes in SDEV units detected in each child with ASD PRE (upper panel) and PEAK (lower
panel) medical cannabis treatment are shown. Dashed red lines indicate – 2 SDEV units from the average of
the TD group.
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FIG. 4. Effect of MC treatment on z-score values of potential fatty acid class of cannabis-responsive biomarkers.
Changes in SDEV units detected in each child with ASD PRE (upper panel) and PEAK (lower panel) medical
cannabis treatment are shown. Dashed red lines indicate – 2 SD units from the average of the TD group.

9

D
ow

nl
oa

de
d 

by
 4

6.
12

.1
19

.2
8 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

4/
07

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



A18 at PRE, was significantly reduced ( p = 0.023) in all
subjects at PEAK below mean value within the TD
physiological range.

Other lipids
About 92% of subjects exhibited TD physiological
range of triglyceride trilaurin-1 and trilaurin-3 levels
at both PRE and PEAK (not shown). Elevated trilaurin-
1 and trilaurin-3 z-score levels detected in patient A17
at PRE (4.6 and 2.8, respectively) were reduced to TD
physiological range at PEAK (�0.4 and �0.3, respec-
tively). The sterol lipid member cholesterol sulfate
(CS) was significantly higher in A8 and A16 (z-score:
2.5 and 2.0, respectively) and slightly high in A2, A9,
and A15 (z-score: 2.5 and 2.0, respectively) at PRE, re-
duced into the TD physiological range at PEAK (not
shown). CS exhibited a significant trend ( p = 0.014)
in shifting the levels at PRE toward the TD range at
PEAK in 87% of subjects within the physiological
range, but below the TD mean.

Discussion
Lipid function in a variety of intercellular and intracel-
lular biological processes providing cells and organelles
with structure, energy source, and signaling, and as
communication.29 As a well-classified group of biomol-
ecules, with known roles in metabolism and catabo-
lism, lipids are gradually becoming an important
biomarker subclass in diagnostics and personalized
medicine.30 Altered lipid metabolism reflecting a
range of dynamic responses to pathophysiological
changes is well documented in neurodegenerative dis-
orders, including AD, PD, Huntington’s disease
(HD), ALS and multiple sclerosis (MS), neuropsychiat-
ric disorders (depression and schizophrenia), neuro-
logical disorders (ASD, seizure, and migraine), and
brain injuries (stroke).5,31

We used saliva as a noninvasive complex biofluid
matrix to evaluate lipid changes in response to success-
ful MC treatment, as determined by physician observa-
tion and parental behavior assessment (Supplementary
Data). Like blood, saliva is a ‘‘mirror of the body’s
health,’’32 and can accurately reflect pharmacodynam-
ic33 and pharmacokinetic34 properties of a medical
treatment. It contains five out of the eight major lipid
groups, including FAs, glycerolipids, phospholipids,
sphingolipids, and sterol lipids; and lacks prenol lipids,
saccharolipids, and polyketides.17

In this study, we detected all five subclasses of lipids
known in saliva and identified members of these sub-

classes as potential cannabis-responsive biomarkers
(Table 1). These subclasses were recently described as
biomarkers of brain disorders.31 According to
Agatonovic-Kustrin et al.,15 phospholipids (24%) and
sphingolipids (17%) are the two major subclasses of lip-
ids found in saliva in healthy populations.

By comparison, we found a similar distribution of
phospholipids at PRE (26%), slightly decreasing at
PEAK (23%), while the sphingolipid fraction was
lower at PRE (12%) and significantly higher at PEAK
(23%) (Table 1). All five sphingolipids identified in
this study responded to MC treatment (Fig. 2) by shift-
ing the levels of 94% of the metabolites outside the TD
physiological range at PRE to the TD physiological
range at peak. The relatively large number of potential
cannabis-responsive biomarkers that respond to MC
treatment (Table 1) and the magnitude of the impact
(Fig. 2) indicate that sphingolipids are a main target
for MC treatment.

Sphingomyelin is an essential subclass of sphingoli-
pid promoting membrane interactions within the my-
elin sheath surrounding nerves and their axons.35 It
is a major lipid biomarker identified at high levels in
neurodegenerative disorders (AD, PD, HD, and ALS),
neuropsychiatric disorders (depression and schizo-
phrenia), neurological disorders (migraine), and brain
injuries (stroke).31 Bent et al.36 demonstrated that
high levels of seven sphingomyelin metabolites, identi-
fied in urine samples of children with ASD, decreased
post-intervention with sulforaphane, a supplement
with indirect antioxidant effects. These changes were
associated with improved behavioral symptoms.

In our study, there appear to be two groups of chil-
dren: one exhibiting high levels ( > 2.0 SDEV above TD
mean) of sphingomyelins (subjects: A2, A8, A9, A13,
A15, A16, and A18) at PRE that shift toward TD
mean at PEAK and a second already exhibiting TD
physiological levels ( < 2.0 SDEV from TD mean) that
remain in this range, effectively not responding to
MC treatment (Fig. 2).

According to the KEGG pathway: hsa04071 sphin-
golipid signaling pathway (https://www.genome.jp/
entry/hsa04071), sphingomyelins and their metabolic
products ceramide and sphigosine-1-phosphaste (S1P)
have a second messenger function in several signaling
pathways. Ceramide is generated from membrane
sphingomyelin by sphingomyelinase and is further
metabolized by ceramidase to yield sphingosine, which
produces S1P through sphingosine kinases, and from
SPG through ceramide synthase 1 and sphingolipid 4-
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desaturase. Ceramide, S1P, and SPG have been shown
to regulate cellular responses to stress, including neu-
ronal apoptosis in AD, ASD, and other neurological
disorders.31

Impaired sphingomyelin profiles are documented
and can result in abnormalities in morphology of den-
drites in autism, which can affect neuron function.37

We have recently shown MC treatment modulates
the levels of N-acetyl-aspartate (NAA), a metabolite
synthesized solely by neuronal mitochondria and indi-
rectly regulating energy production.20 These results
suggest further investigation to determine whether
the reduction of high levels of sphingosines and NAA
in children with ASD exhibiting nonphysiological lev-
els benefits from MC treatment. It is also important
to determine if MC treatment directly or indirectly af-
fects antioxidant capacity and mitochondrial function.

The sphingosines [SGS(20:1)-2 and SGS(18:1)] and
SPG represent the two groups within the subclass of
sphingosine (sphingosine and sphingomyelin) and
dihydrosphingosine (SPG). Both sphingosine and
dihydrosphingosine groups are essential in multiple bi-
ological processes, including membrane structure, sig-
nal transduction, and brain development, and are
also involved in demyelination.38

Sphingosine and its phosphorylated form sphingo-
sine phosphate were found at elevated levels in AD,
PD, HD, MS, and schizophrenia,31 while SPG was
detected in high levels only in MS. In this study, sphin-
gosines and SPG exhibited similar patterns, namely
high levels in subjects A2, A8, A11, A13, A15, A16,
and A18. In addition, slightly higher levels than the
TD mean were observed in A1 and A3 for SPG.

To obtain further insights into the impact of MC on
potential lipid-based cannabis-responsive biomarkers
within the limitations of this observational evaluation
(small sample size and the personalized MC treatment
of each participant), we conducted a correlation-based
network analysis of lipid profiles39 of PRE versus PEAK
samples.

Metabolic pathways can be described as the move-
ment of metabolites from entry point (substrate) to
an exit point (product) through a network of process-
ing steps. A metabolic pathway can contain multiple
networks. The current knowledge regarding lipids
includes (1) classification26; (2) specific cellular and
subcellular compartment localization40; (3) metabolic
and signaling networks39; and (4) role in homeostasis
and pathophysiology,41 and the advanced lipidomics
bioinformatics tools,42 including functional biomark-

ers.15 These provide an opportunity to analyze and pro-
pose a preliminary lipid metabolic network in response
to MC treatment.

Figure 5 describes MC treatment-dependent rela-
tionships using pairwise correlations over all potential
lipid-based cannabis-responsive biomarkers described
in Table 1. We identified a subnetwork of seven poten-
tial biomarkers with linkage to neuropsychiatric and
neurodegenerative disorders, including three FAs, two
sphingomyelins, and two phospholipids (Fig. 5A).

High levels of acylcarnitines in patients with ASD,43

eicosenoic acid in patients with schizophrenia,44 Lyso-
PAF in posterior/entorhinal cortex of AD patients,
sphingomyelin in chronic stress and in an antidepressant-
treated mouse model,45 and LPE in a cognitive impair-
ment rat model46 were associated with mitochondrial
fatty acid beta-oxidation and peroxisomal disorders
and may suggest a role for inflammation and/or redox
regulation.

The second subnetwork (Fig. 5B) consists of two
sphingosines [SGS(20:1)-2 and SGS(18:1)] and SPG, rep-
resenting the two groups in the subclasses sphingosine
(sphingosine and sphingomyelin) and dihydrosphin-
gosine (SPG). Both sphingosine and dihydrosphingosine
groups are involved in demyelination in MS.38 Together
with CS, the third member of this subnetwork, SGSs and
SPG were all linked to the oxidative stress-induced neu-
rodegenerative pathology in MS.47,48

We also identified two potential lipid-based cannabis-
responsive biomarkers LEA ( p = 0.023) and DHA
( p = 0.041) (Table 1) exhibiting significant changes in
response to MC treatment and linked to anti-
inflammatory activity. These biomarkers are not inter-
connected to the subgroups identified in Figure 5A.
LEA, an endocannabinoid that exhibits a weak binding
property to CB1 and CB2,13 has a suggested role in
CNS inflammation response by the transient receptor po-
tential cation channel subfamily V member 1 (TRPV1).49

DHA is a highly abundant bioactive omega-3-PUFA in
the brain exhibiting anti-inflammatory activity at the in-
tracellular and the humoral immune system levels in rats
with traumatic brain injury.50

Limitations
Although we successfully identify potential lipid-based
cannabis-responsive biomarkers exhibiting significant
changes after MC, the following limitations should be
considered in this observational evaluation: first, the
small sample size of children with ASD successfully
treated with MC did not cover the heterogeneity of

LIPIDOMICS-BASED CANNABIS-RESPONSIVE BIOMARKERS IN AUTISM 11

D
ow

nl
oa

de
d 

by
 4

6.
12

.1
19

.2
8 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

4/
07

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FIG. 5. Possible cannabis regulation of lipid cannabis-responsive biomarkers. Maps of subnetwork (A) and
(B) illustrate the possible interaction between cannabis-responsive biomarkers (nodes) and correlation
coefficients (edges) at 99% confidence level. Free fatty acids (dark blue), sphingolipids (light blue),
phospholipids (purple), and sterol lipids (red) are indicated.
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the ASD population, and thus cannot suggest that MC
provides a treatment for all clinical phenotypes of ASD.
Second, each child is a single case treated with unique
cannabinoid content and regimen. Thus, association of
biomarkers with cannabinoids is limited to the pres-
ence of cannabinoids and not to the potency or regi-
men. Third, we conducted an observational study
where samples and surveys were taken in a single day
for each patient.

Since the child’s behavior is influenced by environ-
mental factors and varies from day to day, samples
and surveys may not represent the full range of behav-
iors for each child. Fourth, children were treated with
prescribed off-the-shelf MC supplied by the parents.
Some doses were measured using a dropper, which
may not be accurate. Fifth, cannabinoid potency
and content were not verified by the authors. Sixth,
the current analysis assumes that all the potential
cannabis-responsive biomarkers have equal impact.

Increasing the number of participants will allow strat-
ification and focus on specific biomarkers related to the
metabolic pathways affected by ASD and the clinical
phenotype. Seventh, since the biomarkers were detected
in saliva, we cannot rule out that the biomarker changes
observed are not in their physiological context.

Conclusions
This exploratory research demonstrates that salivary lip-
idomics can serve as a powerful tool to identify and
quantify lipid-based biomarkers that respond to MC
treatment in children with ASD. Members from all the
five known lipid subclasses were identified in saliva, in-
cluding monounsaturated and polyunsaturated FAs,
phospholipids, sphingolipids, glycerolipids, and sterol
lipids. The relative changes in the biomarker distribu-
tion pattern at PRE and PEAK suggest that MC mainly
affects the sphingolipid subclass. Changes observed in
two sphingomyelin potential cannabis-responsive bio-
markers together with changes in NAA previously
detected in the polar fraction of these saliva samples20

may suggest MC improves neuron signaling, regulation,
and/or proper myelination in children with ASD.

Potential lipid-based cannabis-responsive biomark-
ers are pharmacodynamic/response-type biomarkers
allowing objective evaluation of the impact of MC
treatment on children with ASD and possible MOA.
Within the limitation of this size and type of this
study, correlation-based network analysis of lipid pro-
files in response to MC treatment provides additional
tools to identify groups with potential interconnections

that may indicate roles in mitochondrial dysfunction,
oxidative stress, and neuroinflammation, all previously
reported to be associated with ASD.

Increasing the sample size and looking at longer
term clinical intervention will support generation of ac-
curate lipid-based cannabis-responsive biomarkers, the
optimization of MC treatment, and the understanding
of the underlying MOA of MC treatment in ASD.
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Abbreviations Used
15(S)-HETE-2¼ 15-hydroxyeicosatetraenoic acid

AD¼Alzheimer’s disease
ALS¼ amyloid lateral sclerosis
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Abbreviations Used (Cont.)
ASD¼ autism spectrum disorder
CB1¼ cannabinoid receptor 1
CBD¼ cannabidiol
CNS¼ central nervous system

CS¼ cholesterol sulfate
DHA¼ docosahexaenoic acid

FA¼ fatty acid
HD¼Huntington’s disease

LCAC¼ long-chain acylcarnitine
LEA¼ linoleoyl ethanolamide

LPC(18:0)¼ lysophosphatidylcholine
LPE(18:1)-1¼ lysophosphatidylethanolamine-1

LPS(18:0)¼ lysophosphatidylserine
Lyso-PAF¼ lyso-platelet-activating factor
Lyso-PPC¼ lysophosphatidylcholine

MC¼medical cannabis
MERCS¼mitochondria-ER contact sites

MOA¼mechanism of action
MS¼multiple sclerosis

MUFA¼monounsaturated fatty acid
NAA¼N-acetyl-aspartate

PD¼ Parkinson’s disease
PUFA¼ polyunsaturated fatty acid
RRLC¼ rapid resolution liquid chromatography

S1P¼ sphigosine-1-phosphaste
SDEV¼ standard deviation

SPG¼ sphinganine
SRS-2¼ Social Responsiveness Scale, Second Edition

TD¼ typically developing
THC¼ tetrahydrocannabinol

WPA4A¼Whole Plant Access for Autism
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