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FOREWORD

From the dawn of time, men resorted to Nature for all they need. No exception was made for
health and, especially, pain. WHO estimated that almost 80% of people count on medicinal
plants to take care of their “well-being” and here is the justification for the growing interest in
the study of natural products and the development of their derivatives.

Among  the  wide  range  of  molecules  in  the  rich  repository  that  Nature  offers,  we  need  to
mention the terpene class, to which a whole volume of this book has been dedicated.

This volume aims to provide the readers with a brief and focused collection of some of the
latest  advances  in  the  field  with  particular  insight  into  the  development  of  synthetic
derivatives from a parent natural compound with highly promising bioactivity and the design
of innovative formulations for possible administration.

Indeed,  by  scrolling  through  the  volume  index,  the  readers  can  find  exciting  novelty  on
terpenes-related topics in four well-organized chapters, including (1) a detailed overview of
the  sesquiterpenes  polypharmacology;  (2)  an  interesting  journey  around  the  cannabinoids
world  towards  the  development  of  new  synthetic  Δ9-THC  derivatives;  (3)  the  design  of
specific formulations to overcome the volatility issue of small sized terpenes-based essential
oils; and (4) an update on the newest generations of endoperoxides endowed with antimalarial
activity.  Also,  the  interested  audience  is  strongly  encouraged  to  get  more  deepen
understanding of the presented topics by a large number of selected references present in each
chapter.

Notably,  every  topic  dealt  with  in  this  volume,  and  in  general  in  the  whole  book,  fully
describes the selected terpene scaffold in all the investigated MedChem and pharmaceutical
points  of  view.  Thus,  detailed information on the  design and synthesis  of  the  compounds,
their bioactivity and pharmacokinetics data, along with computational and formulation studies
are provided.

The  authors,  also,  discuss  how  the  chemical  modification  of  parent  compounds  affects
biological or enzymatic activity and ADME profile, suggesting how to justify the changes in
the activity/ADME data in MedChem terms.

Through  the  several  examples  of  MedChem  strategies  to  fix  the  most  common  issues  on
terpene  derivatives,  e.g.  low  potency  and  poor  solubility,  the  authors  drive  the  young
researcher audience to derive general rules that could be useful in different experiments and
studies  they will  perform.  For  these  reasons,  I  strongly believe the  book is  addressed to  a
heterogeneous  audience,  comprising  both  expert  and  beginner  MedChem  scientists  and
pharmaceutical  technologists  and  anyone  who  wants  to  update  their  knowledge  on  this
broader  and  broader  field  of  terpene  research  under  the  kind  and  helpful  guidance  of  the
authors, which are widely recognized scientists in Academia.



ii

In the next chapters, the readers will find recurrent concepts that we could summarize with
the following keywords: #terpenes; #sesquiterpenes; #medicinalchemistry; #pain; #malaria;
#naturalproducts;  #optimization;  #drugdesign;  #bioactivity;  #synthesis;
#computationalchemistry;  #biology;  #chemistry;  #formulation;  and  so  on.

Good reading and taking notes.

Dr. Ilaria D’Agostino Ph.D.
Department of Pharmacy

G. d  Annunzio  University  of  Chieti-Pescara
Via dei Vestini 31, 66100 Chieti (Italy)
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PREFACE

Natural products are often used in drug development due to their ability to provide unique and
chemically  diverse  structures  unmatched  by  any  synthetic  chemical  collection.  Medicinal
Chemists have always been inspired by nature because natural products are often perceived as
safer and for their capability to interact with biological targets. Indeed, in recent years, there
has  been  emerging  research  on  traditional  herbal  medicines  based  on  their  efficacy  in  the
treatment of diseases for which they have been traditionally applied.

Conversely,  natural  compounds  suffer  from  several  issues  such  as  scarce  availability  and
seasonality, high differences in the production/extraction/isolation, low purity in commercial
products  from  worldwide  suppliers,  and  side  effects.  Moreover,  due  to  their  chemical
complexity  and  the  optional  presence  of  different  chiral  centers,  the  total  synthesis  of  a
natural compound can be also challenging and expensive.

This book series would propose the latest discoveries in the field of compounds inspired by
nature and obtained by chemical/enzymatic modification of a natural compound in the search
for biologically active molecules for the treatment of human/animal ailments and permit the
disposal  of  a  wider  arsenal  for  clinicians.  The  natural  compounds  are  grouped  into  three
clusters.  The  chapters  are  built  in  the  following  format:  •  General  background  on  the
(phyto)chemistry of the scaffold; • General background on the pharmacological profile of the
scaffold; • Description of the proposed derivatives and their potentialities with respect to the
parent  compounds  (with  a  particular  emphasis  on  the  synthetic  approaches  and  structure-
activity relationships); • In silico analysis of the crucial interactions with the biological target,
when available; • Clinical studies and patent surveys (if available) on the new and proposed
structures.

The readership of this book is represented primarily by Academies, Researchers, Specialists
in the pharmaceutical field, Industry sector, Contract Research Organizations and hospitals
dealing with clinical research.

Simone Carradori
Department of Pharmacy

G. d Annunzio University of Chieti-Pescara
Italy
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CHAPTER 1

Sesquiterpenes:  A  Terpene  Subclass  with
Multifaceted Bioactivities
Antonella Di Sotto1,*, Federico De Paolis1, Marco Gullì1, Annabella Vitalone1

and Silvia Di Giacomo1

1 Department of Physiology and Pharmacology V. Ersparmer, Sapienza University of Rome, P.le
Aldo Moro 5, 00185 Rome, Italy

Abstract:  Sesquiterpenes  are  terpene  compounds,  containing  three  isoprene  units
rearranged in  a  wide variety  of  structures.  They occur  widely in  nature,  not  only in
plants  but  also  in  fungi  and  marine  environments.  Owing to  peculiar  structures  and
diverse biological activities, they attracted great attention in pharmaceutical, medicinal
chemistry and nutraceutical fields.  The present chapter  collects novel  insights  into
chemistry,  distribution  in  nature  and  pharmacological  properties  of  sesquiterpenes,
focusing especially on caryophyllane, lactone-type, and eremophilane subgroups, due
to  the  growing  pharmacological  interest.  Novel  structures  and  alternative  natural
sources to be further investigated and exploited have been highlighted too. Moreover,
some issues  regarding toxicity  risk  and bioavailability  of  sesquiterpenes,  which can
limit their application in practice, have been discussed.

Keywords:  Artemisinin,  Alantolactone,  Arglabin,  Anticancer,  Antimalarial,
Antiinflammatory, Antimigraine, β-Caryophyllene, Capsidiol, Chemopreventive,
Eremophilane,  α-Humulene,  Helenalin,  Isopetasin,  Parthenolide,  Petasin,
Terpenes.

INTRODUCTION

Terpenes are a large class of structurally diverse and widely distributed secondary
metabolites,  derived  from a  common  basic  building  block,  namely  five-carbon
isoprene unit (C5H8), assembled in linear chains or cyclic structures Table 1. More
complex and functionalized terpenes, namely terpenoids, can also occur in nature
[1].

* Corresponding author Antonella Di Sotto: Department of Physiology and Pharmacology V. Erspamer, Sapienza
University, Rome, Italy; E-mail: antonella.disotto@uniroma1.it

Simone Carradori (Ed.)
All rights reserved-© 2023 Bentham Science Publishers
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Table 1. Classification of terpene subclasses

Terpene Subclass Isoprene Units Number of Carbons

Monoterpenes 2 C10

Sesquiterpenes 3 C15

Diterpenes 4 C20

Sestertepenes 5 C25

Triterpenes 6 C30

Tetraterpenes 8 C40

Two major biosynthetic routes, namely the mevalonate (MVA) pathway and 2C-
methyl-D-erythritol-4-phosphate  (MEP)  pathway  (or  Rohmer  pathway),  have
been reported to  be  the  terpene sources  [2,  3].  The MVA pathway leads  to  the
formation  of  the  terpenoid  C5  precursors  isopentenyl  pyrophosphate  (IPP)  and
dimethylallyl  pyrophosphate  (DMAPP):  three  molecules  of  acetyl-CoA  are
condensed to a 3-hydroxy-3-methylglutaryl-CoA, which is subsequently reduced
to  MVA,  whose  phosphorylation  and  further  rearrangements  lead  to  IPP  and
DMAPP  (Fig.  1)  In  the  MEP  (or  Rohmer)  pathway,  1-deoxy-D-xylulose  5-
phosphate,  obtained  by  condensation  of  pyruvate  and  glyceraldehyde  3-
phosphate,  is  converted into MEP which further  leads to  IPP and DMAPP, the
basic building blocks of all terpene (Fig. 1).

Fig.  (1).   Biosynthetic  pathways  of  terpenes:  MVA  or  mevalonate  pathway  and  MEP  (2C-methyl-
D-erythritol-4-phosphate)  or  Rohmer  pathway.
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Isoprene  directly  originates  from  IPP  or  DMAPP,  while  monoterpenes  are
synthesized  from  a  geranyl  pyrophosphate  (GPP)  precursor  (also  known  as
geranyl diphosphate or GDP), produced by the condensation of IPP and DMAPP
(Fig.  2)  [4].  GPP  and  one  molecule  of  IPP  can  be  condensed  to  farnesyl
diphosphate (FPP), which can be further converted into different sesquiterpenes
and  triterpenes;  furthermore,  the  addition  of  IPP  to  FPP  leads  to  geranyl
geranyldiphosphate  (GGPP),  from  which  diterpenes  and  tetraterpenes  (or
carotenoids)  arise  [4].

Terpenes  are  produced  by  a  wide  variety  of  plants,  fungi  and  some  animals,
mediating  antagonistic  and  beneficial  interactions  among  organisms  [2].
Particularly, high terpene levels have been found in plant reproductive structures
and foliage, where they can act as allelopathic compounds, mediating plant biotic
and abiotic interactions [1]. Indeed, some of them, especially volatile compounds,
have  been  exploited  by  plants  as  a  weapon  against  herbivores  and  pathogens;
moreover,  other  compounds  can  mediate  plant  metabolic  adaptation  to  climate
changes and regulate  cell  membrane permeability  due to  their  lipophilic  nature
[5]. For instance, in response to root feeding by caterpillars, corn (Zea mais L.)
roots  release  the  sesquiterpene  β-caryophyllene,  which  is  attractive  to
entomopathogenic nematodes and stimulates their killing ability against herbivore
larvae [6].

The  monoterpene  ketone  pulegone  has  been  reported  to  be  the  main
environmental  defense  released  by  Mentha  pulegium  L.,  while  helivypolides,
annuolides and helibisabonols are the most significant allelochemicals produced
by  sunflower  (Helianthus  annuus  L.)  [7,  8].  Similarly,  monoterpenes  and
sesquiterpenes  contained  in  the  essential  oil  from Cinnamomum septentrionale
Hand.-Mazz.  produced  phytotoxic  effects  against  several  species,  such  as
Taraxacum  officinale  L.  and  Eucalyptus  grandis  L  [8].

Another  example  of  allelopathic  interaction  is  the  “Salvia  phenomenon”,
characterized by the ability of some Salvia species (i.e. Salvia leucophylla and S.
apiana) to form a typical vegetation patterning in the soil in its vicinity, due to the
production of monoterpenoids (i.e. camphor, 1,8-cineol, β-pinene, α-pinene and
camphene) which hinder the growth of other plants [8]. The phytotoxic effects of
Salvia  spp.  have  been  also  ascribed  to  the  presence  of  di-  and  triterpene
compounds,  which  include  clerodane  and  neo-clerodane  diterpenoids  [9];
moreover, a number of phytotoxic diterpenes have been found in both plant and
microorganisms [10].

Terpenes have attracted great scientific attention due to their multiple biological
properties,  thus  strengthening  the  industrial  interest  in  their  application  as
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conservative,  antioxidant,  flavoring  compounds,  basic  structures  for
hemisynthesis,  along  with  the  research  about  their  possible  nutraceutical  and
pharmacological role [1, 11 - 13]. Owing to the low-level exposure, terpene use is
usually  recognized  as  safe;  however,  some  toxicity  concerns  to  be  further
evaluated  have  been  highlighted  for  some  compounds  [14  -  18].

A low yield from natural sources and poor solubility in biological fluids represent
the major limits for the use of terpenes. Innovative sources of terpenes have been
found  in  metabolically  engineered  microbes,  thus  allowing  to  improve  the
production of several monoterpenes, sesquiterpenes, diterpenes and carotenoids
(e.g.  limonene,  pinene,  sabinene,  santalene,  bisabolene,  sclareol,  taxadiene,
lycopene,  β-carotene  and  astaxanthin)  [19,  20].  On  the  other  hand,  suitable
pharmaceutical  formulations,  including  nanoemulsions,  microcapsules  and
liposomes,  have  been  evaluated  as  possible  delivery  systems  to  promote
bioavailability  and  stability  [21  -  28].

Monoterpenes arise from GPP (Fig.  2).  Table 1.  and occur in nature as acyclic
(linear),  monocyclic  and  bicyclic  structures,  often  with  an  oxygen-containing
functional  group  and  are  the  main  components  of  essential  oils.  Linalool,  β-
myrcene, and linalyl acetate are among the most known linear compounds, while
limonene,  α-terpineol,  1,8-cineol  (syn.  eucalyptol),  terpinen-4-ol,  menthol,  cis-
verbenol, eugenol, α-pinene, isoborneol and carvacrol possess cyclic (or bicyclic)
structures (Fig. 3). some of them, co-occur in essential oils being metabolically
correlated  [29,  30].  For  instance,  during  red  wine  aging,  limonene  undergoes
biotransformations and chemical rearrangements, leading to α-terpineol and 1,8-
cineol  generation,  which seem to  be  responsible  for  the  “eucalyptus”  aroma of
some  red  wines  and  to  confer  healing  properties  [31].  Different  monoterpenes
have  been  highlighted  to  possess  interesting  bioactivities,  which  include
antimicrobial,  antimutagenic,  genoprotective,  antioxidant,  anti-inflammatory,
antiproliferative, penetration enhancing, anxiolytic, myorelaxant and hypotensive
ones [13, 31 - 45].

The  antimicrobial  properties  have  been  ascribed  to  the  ability  to  interact  with
phospholipids, due to their high lipophilic nature, thus affecting cell membrane
permeability  and  inducing  leakage  of  the  intracellular  materials  [35].  A
modulation  of  cell  membrane  permeability  seems  to  be  involved  in  the
antimutagenic  and  genoprotective  properties  too  [31,  32,  35].  The  ability  of
several monoterpenes to interact with the skin phospholipids and to enhance the
percutaneous  absorption  of  drugs,  and  their  safe  toxicity  profile,  have
strengthened  their  application  as  penetration  enhancers  [32].  Moreover,  the
activation  of  transient  receptor  potential  melastatin  (TRPM8)  ion  channels  has
been  found  responsible  for  the  analgesic  effects  of  menthol  [46],  whereas  an
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increased mucociliary activity and a lowered mucus production contribute to anti-
inflammatory and bronchodilator effects of eucalyptol [47].

Fig. (2).  Biosynthesis of different terpene subclasses from the subunit IPP.

Among the other terpene subclasses, diterpenes are generated from GGPP (Fig.
2);  Table 1  and are widely diffused in nature,  being produced by plants,  fungi,
bacteria,  and animals  [48].  A number  of  these compounds have been shown to
produce diverse biological effects, thus strengthening the pharmacological interest
for future applications and the biotechnological research for alternative sources
[48].  For  instance,  taxanes  e.g.  taxol,  (Fig.  3)  and  their  derivatives  have  been
studied as chemotherapeutic agents [49], while carnosic acid, abietic acid, steviol,
and andrographolide (Fig.  3)  displayed antiobesity properties [50].  Remarkable
healing  properties,  including  anticancer,  antibacterial,  genoprotective,  anti-
inflammatory, antidiabetic, immunomodulatory, and neuroprotective ones, have
been  reported  for  other  diterpenoids,  among  which  ginkgolides,  steviosides,
tanshinones,  tobacco  cembranoids,  and  abietane,  labdane,  ent-kaurane,
isopimarane and seco-isopimarane diterpenes [51 - 65]. Accordingly, coffee bean
diterpenes, particularly cafestol and kahweol (Fig. 3), have been found to produce
anti-inflammatory  and  anticancer  effects  in  preclinical  models,  although  the
adverse  effects  registered  at  high  dosages  have  suggested  the  need  to  define
appropriate  intake  levels  [66].
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Fig. (3).  Chemical structures of major studied monoterpenes and diterpenes.

Triterpenes  arise  from  two  molecules  of  FPP  (Fig.  2);  Table  1  and  have  been
identified in leaves, stems, barks, flowers and fruit peels of several plants: licorice
(Glycyrrhiza glabra L.) roots, centella (Centella asiatica L.) leaves, olive (Olea
europea  L.)  leaves,  Momordica charantia  L.  fruit,  avocado (Persea americana
Mill.)  seeds,  and  horse  chestnut  (Aesculus  hippocastanum  L.)  are  examples  of
known herbal sources of triterpenes [67 - 70]. Owing to their structural diversity,
triterpenes  are  classified  as  tetra  and  pentacyclic  structures;  dammarane-,
lanostane- or cycloartane-type compounds are the major subgroups of tetracyclic
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triterpenes,  while  lupane,  oleanane  and  ursane  derivatives  are  pentacyclic
triterpenes  [67  -  74].  These  compounds  have  shown  a  plethora  of  biological
activities,  which  include  antidiabetic,  cardioprotective,  hepatoprotective,  anti-
inflammatory, antioxidative, anticancer, chemopreventive, and antimicrobial [71].
Some triterpenes, among which 1β-hydroxyaleuritolic acid 3-p-hydroxybenzoate,
lupeol,  uvaol,  β-aescin and glycyrrhizin (Fig. 4),  have been reported to possess
antiviral, anti-inflammatory, and immunomodulatory properties, thus suggesting a
possible interest against coronavirus infections [75].

Fig. (4).  Chemical structures of major studied triterpenes, sesterterpenes and tetraterpenes.
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Sesterterpenes (also named sesterpenes) originate from GGPP and IPP (Fig. 2) ;
Table  1.  and  have  been  mainly  found  in  fungi  and  marine  species  [76].
Ophiobolins,  which  are  fungal  metabolites,  represent  the  major  investigated
sesterterpenes for their bioactivities [76]. Ophiobolin A (Fig. 4) isolated from the
pathogenic  plant  fungus  Ophiobolus  miyabeanus,  exhibited  remarkable
antiproliferative,  antibacterial,  antiparasitic,  antiviral  and  immunomodulatory
effects  [77].  Particularly,  it  produced  cytotoxic  and  pro-apoptotic  effects  in
different  cancer  cell  lines,  and  reduced tumor  size  in  vivo  xenograft  models  of
breast  cancer  [77].  Antiproliferative  properties  have  been  also  highlighted  for
other ophiobolins and some hypotheses about the structure-activity relationship
have been made [77]. However, more deep studies are required to better defined
the anticancer mechanisms of these compounds and their possible usefulness.

Regarding  tetraterpenes,  also  known  as  carotenoids,  they  are  natural  pigments
exhibiting yellow, orange, red and purple colors, and contain eight isoprene units
with  a  40-carbon  skeleton  Table  1  [78].  Their  biosynthesis  arises  from  the
condensation of two molecules of GGPP (Fig. 2) and occur as essential pigments
in different photosynthetic organisms, such as bacteria, some species of archaea
and  fungi,  algae,  plants,  and  animals  [78].  They  are  not  produced  by  animals,
while can be introduced by food and further modified through metabolic reactions
[78, 79]. Particularly, carotenoids which contain unsubstituted β-ionone rings (i.e.
α-,  β-  and  γ-carotenes,  β-cryptoxanthin;  (Fig.  4)  are  defined  as  pro-vitamin  A,
being retinoid precursors [79 - 81]. In marine environment, these compounds are
produced by both autotrophic and non-photosynthetic organisms [79].

Carotenoids  exert  important  physiological  functions  (i.e.  hormones,  photo-
protectors,  antioxidants,  color  attractants)  also  in  non-photosynthetic  organs  of
plants [78, 82]. Similar roles have been reported in animals, wherein carotenoids
act as photo-protectors, antioxidants, enhancers of immunity, and as signals for
biotic  interactions,  both  intra-  and  interspecies  [80,  82,  83].  The  antioxidant
properties  have  been  ascribed  to  the  radical  scavenger  abilities  of  carotenoids,
which  seem  to  be  due  to  both  physical  and  chemical  reactions  [79].  Several
studies  have  highlighted  an  important  role  of  carotenoids  in  the  control  of
different organ functions and in the preventions and treatment of human disorders,
including diabetes, obesity, neurodegeneration, cardiovascular, prostate and eye
diseases,  and cancer [84 -  92].  For instance,  lutein and zeaxanthin (Fig.  4),  the
major carotenoids found in human milk, are involved in the visual and cognitive
development  of  infants  [93].  Similarly,  high  dietary  intake  and  blood
concentrations  of  lutein  are  associated  with  a  lowered  risk  of  coronary  heart
disease  and  stroke  [94].  Moreover,  β-carotene,  lutein,  and  zeaxanthin  (Fig.  4)
were  found  able  to  protect  the  retina  and  lens  from  photochemical  damage
induced by light exposure, thus suggesting a potential interest in the prevention of
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eye  diseases  [87].  Beneficial  effects  of  dietary  carotenoids,  such  as  lycopene,
fucoxanthin,  astaxanthin,  crocin,  and  crocetin,  have  been  reported  also  in
preclinical models of neurodegenerative diseases; however, clinical confirmations
are needed to support future pharmacological application [95].

The present chapter is focused on the sesquiterpene subgroup and collects novel
insights  about  their  chemistry,  distribution  in  nature  and  pharmacological
properties. Some issues regarding toxicity and bioavailability have been discussed
too. Owing to the growing pharmacological interest, caryophyllane, lactone-type,
and eremophilane sesquiterpenes have been analysed in more detail.

Fig. (5).  Biosynthetic pathways of sesquiterpenes.

SESQUITERPENES

Sesquiterpenes are characterized by three isoprene units (C15H24) and are widely
distributed  in  nature.  Great  amount  has  been  found  in  plants  especially  in
Asteraceae  family,  where  they  represent  the  characteristic  constituents  [96].
However,  they  have  been  reported  from  several  plant  families,  such  as
Acanthaceae,  Amaranthaceae,  Apiaceae,  Magnoliaceae  and  Lamiaceae  [97].  A
large number of sesquiterpenes have also been identified in marine species (e.g.
Actinocyclus papillatus, Sclerodoris tanya, Bathydoris hodgsoni) [98], along with
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bacteria  (e.g.  Streptomyces  citreus,  Streptomyces  clavuligerus  and  Roseiflexus
castenholzii)  [99],  and  fungi  (e.g.  Trichoderma  virens,  Trichothecium  roseum
Periconia  sp.)  [100  -  102].  They  originate  from  the  condensation  of  geranyl
pyrophosphate  (GPP) with  a  molecule  of  3-isopentenyl  pyrophosphate  (IPP)  to
yield a farnesyl pyrophosphate (FPP) which represents their precursor (Fig. 5)

Indeed, a farnesyl cation is generated by the loss of the diphosphate moiety (OPP)
of FPP, whose isomerization, cyclization and rearrangements lead to a wide range
of acyclic, monocyclic and ring-fused structures [103].

Acyclic sesquiterpenes, containing a farnesane skeleton, are directly obtained by
farnesyl cation, while nerolidyl cation, obtained by farnesyl cation isomerization,
is  the  precursor  of  bisabolene,  cadinane-type,  longifolene  sesquiterpenes  and
hydroazulenes [103, 104]. Moreover, different cyclizations and modifications of
farnesyl cation leads to (E,E)  humulyl and germacradienyl cations,  from which
caryophyllane  and  lactone  sesquiterpenes  (e.g.  germacranolides,  guaianolides,
pseudoguanolides, xanthanolides, eudesmanolides) arise, respectively [105, 106].
Indeed,  rearrangements  of  germacradienyl  cation  generate  a  germacrane
precursor, whose cyclizations lead to a guaianolide or eudesmane skeleton, from
which guanolides and eremophilane sesquiterpenes come from, respectively [106,
107]. Terpene synthases is the enzyme which drives the biosynthesis; afterwards,
oxidation, reduction, isomerization, and conjugation reactions determine further
modifications  of  the  basic  skeletons  generating  a  huge  number  of  different
compounds with linear, cyclic, bicyclic, and tricyclic structures, some of which
also possess a lactone ring [108].

The  unique  structure  combinations  of  these  secondary  metabolites  confer  them
many  biological  properties,  such  as  insect  antifeedant,  antiprotozoal,
antispasmodic  [97],  antibacterial,  antiviral,  cytotoxic,  antitumor,  anti-
inflammatory  [109],  immunomodulatory,  chemopreventive  [105],  antioxidant
[110],  anti-ulcer  [111],  anti-diabetic  and  lipid-lowering  [111].  In  the  next
paragraphs,  details  about  chemistry  and  natural  occurrence  of  caryophyllane,
lactone-type, and eremophilane sesquiterpenes, along with their pharmacological
properties are reported.

CARYOPHYLLANE SESQUITERPENES

Chemistry and Distribution in Nature

Caryophyllane sesquiterpenes contain a caryophyllane skeleton, characterized by
a  dimethylcyclobutane  fused  with  a  nine-membered  ring,  containing  a  trans-
endocyclic  (4-5)  double  bond,  whose  oxidation  generates  their  epoxide
derivatives  [105].  In  plants,  caryophyllane  scaffold  originates  from  a



Sesquiterpenes: a Terpene Medicinal Chemistry Lessons From Nature, Vol. 2   11

caryophyllenyl  cation,  obtained  by  the  enzymatic  polycyclization  of  FPP
cyclization  through  the  (E,E)-humulyl  carbocation  [112].

These  compounds  widely  occur  in  plants,  especially  in  essential  oils,  although
numerous similar structures have been found in marine species and fungi [105].
Essential oils usually contain mixtures of different sesquiterpenes, especially β-
caryophyllene, β-caryophyllene oxide, α-humulene and isocaryophyllene (Fig. 6),
and minor metabolites. β-Caryophyllene (or trans-caryophyllene) represents the
first compound identified in nature, along with its cis-isomer isocaryophyllene (or
as  γ-caryophyllene),  while  β-caryophyllene  oxide  represents  its  epoxide
metabolite [113]. β-Caryophyllene has been found in plant rhizome and wine too
[104, 114, 115]. α-Humulene (or α-caryophyllene) is considered an opened-ring
isomer of trans-caryophyllene [116].

Table 2. Caryophyllane sesquiterpenes identified in nature.

Compounds Natural
Occurrence Major Sources/Plant Family Ref.

β-Caryophyllene Plants

Scutellaria californica A. Gray/
Lamiaceae Eugenia caryophyllata

L./ Myrtaceae
Copaifera langsdorffii Desf./
Fabaceae Orthodon dianthera
Maxim./ Lamiaceae Nepeta

curviflora Boiss./ Lamiaceae
Piper nigrum L./ Piperaceae

Zingiber nimmonii (J. Graham)
Dalzell/ Zingiberaceae

[105]

β-Caryophyllene oxide Plants

Tephrosia persica Boiss./ Fabaceae
Plinia dermatodes Urb./ Myrtaceae

Eugenia caryophyllata L./
Myrtaceae

Eugenia rocana Britt. et Wils./
Myrtaceae Syzygium gardneri Thw./

Myrtaceae
Tagetes patula L./ Asteraceae

Psidium salutare (HBK) Berg./
Myrtaceae

[105]
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Compounds Natural
Occurrence Major Sources/Plant Family Ref.

α-Humulene Plants

Cachrys alpina Bieb./ Apiaceae
Callistemon polandii F.M.Bailey./
Myrtaceae Helichrysum stoechas
ssp. barrelieri var. spathulatum/

Asteraceae Lycopus australis R. Br./
Lamiaceae

Stachys lanata K. Koch/ Lamiaceae
Zingiber nimmonii (J. Graham)

Dalzell/ Zingiberaceae

[105]

Isocaryophyllene Plants

Baccharis coridifolia DC./
Asteraceae Jasminum sambac L./

Oleaceae
Lantana camara L./ Verbenaceae
Hypericum heterophyllum Vent./

Hypericaceae

[105]

Kobusone Marine species Rumphella antipathies [117]

Isokobusone Marine species Rumphella antipathies [118]

Nanocaryophyllenes A, B Marine species Sinularia nanolobata V. [119]

Rumphellatins A, B and C Marine species Rumphella antipathies [120 -
122]

Rumphellolides A-F Marine species Rumphella antipathies [123]

Sinunorcaryophyllenol Marine species Sinularia sp. [124]

Suberosols A-D Marine species Subergiorgia suberosa P. [125]

Caryophyllene derivatives Fungi from marine
species Ascotricha sp. ZJ-M-5 [126]

Cytosporinols Fungi Cytospora sp. [127

Fuscoatrol Fungi Humicola fuscoatra [128]

6-Hydroxypunctaporonins Fungi Pestalotiopsis disseminate T. [129]

Pestalotiopsins Fungi Pestalotiopsis spp. [129 -
131]

Highly oxigenated derivativesa Fungi Pestalotiopsis spp. [132]

Punctaporonins Fungi Hansfordia sinuosae [133]

Punctatins Fungi Poronia punctata [134]

Sch 725432, Sch 601253, Sch 601254,
and Sch 725434 Fungi Chrysosporium pilosum [135]

Walleminol, walleminone Fungi Wallemia sebi J-O [136]
aPestalotiopsolide A, taedolidol, 6-epitaedolidol.

(Table 2) cont.....
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Owing to the flexibility of the nine-membered ring and the high reactivity of the
endocyclic  4,5-double  bond  [113],  caryophyllane  skeleton  can  undergo
rearrangements and cyclization reactions, leading to the generation of a number of
caryophyllane-like compounds and polycyclic derivatives Table 2 [105].

For instance, rumphellatins,  kobusone, isokobusone, sinunorcaryophyllenol and
rumphellolides are chloro-containing caryophyllane-type structures (Fig. 6) [117,
118,  120 -  123].  Suberosols,  fuscoatrol  A,  buddledins  and cytosporinols  are  β-
caryophyllene  derivatives,  while  walleminol  and  walleminone  are  cis-fused
isocaryophyllenes (Fig. 6) [125, 127, 128, 136]. Pestalotiopsins, pestaloporinates,
punctaporonin,  pestaloporonins,  punctatins  and  trioxygenated  caryophyllenes
(Sch 601253,  Sch 601254,  and Sch 725434) are  classified as  polycyclic  highly
oxygenated structures [129 - 135].

Fig. (6).  Examples of caryophyllane sesquiterpene chemical structures.

Rumphellatins,  kobusone,  isokobusone  and  rumphellolides  have  been  isolated
from a Formosan soft sea coral Rumphella antipathies [117, 118, 120, 121, 123],
nanonorcaryophyllenes  A  and  B  from  the  Taiwanese  soft  coral  Sinularia
nanolobata  [119],  while  the  norsesquiterpene  sinunorcaryophyllenol  from
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Sinularia sp [124]. Moreover, suberosols A, B, C, and D, along with buddledins C
and  D were  identified  in  the  Taiwanese  gorgonian  coral  Subergorgia  suberosa
[125].  Other  compounds  (e.g.  pestalotiopsins,  6-hydroxypunctaporonin,
pestaloporonins  A-C,  and  the  highly  oxidazed  caryophyllene  derivatives
pestalotiopsolide  A,  taedolidol  and  6-epitaedolidol)  have  been  identified  in
Pestalotiopis  species,  isolated from the  bark of  various  plants  [129 -  132,  137,
138].  Pestalotiopsins-like  sesquiterpenes  were  also  found  in  the  marine  fungus
Ascotricha  sp.  ZJ-M-5  [126].  Likewise,  the  following  caryophyllene
sesquiterpenoids were isolated from the cultures of endophytic fungi: punctatins
from  Poronia  punctata,  walleminol  and  walleminone  from  Wallemia  sebi,
fuscoatrol  A  from Humicola  fuscoatra,  Sch  725432,  Sch  601253,  Sch  601254,
and Sch 725434 from Chrysosporium pilosum, cytosporinols from Cytospora sp.,
and punctaporonins H–M from Hansfordia sinuosae [127, 128, 133 - 136].

Pharmacological Properties

Biological  activities  of  caryophyllane  sesquiterpenes  have  been  investigated  in
different  experimental  models.  Compounds  from  marine  species,  including
fuscoatrol and rumphellatins A and B showed interesting antimicrobial activities
[120,  121,  128],  while  pestalotiopsins  displayed  immunosuppresive  properties
[130]. Different caryophyllane sesquiterpenoids hindered growth and proliferation
of cancer cell lines. Particularly, nanocaryophyllene B produced cytotoxic effects
in human colon and liver cancer cells, despite a null activity of its trans-isomer
[119].  Similarly,  sesquiterpenes  isolated  from  Ascotricha,  suberosols  and
pestalotiopsin A were highly cytotoxic in human leukaemic cells 125,126,139].
Interestingly,  the  cis-pestalotiopsin  A  was  the  most  potent  isomer  [139].  By
contrast,  moderate  cancer  cytotoxicity  was  reported  for  cytosporinols  and
punctaporonins, while sinunorcaryophyllenol was not cytotoxic [124, 127, 133].
However,  no  evidence  about  a  possible  structure-activity  relationship  and  the
mechanisms  involved  is  available.

Caryophyllane  sesquiterpenes  from  plants,  including  β-caryophyllene,  β-
caryophyllene  oxide,  isocaryophyllene  and  α-humulene  attracted  a  greater
attention  [105].  A  plethora  of  biological  activities,  including  antibacterial,
antifungal,  antioxidant,  chemopreventive,  antiproliferative  and  anticancer  have
been  highlighted  in  preclinical  models  [140  -  142].  α-Humulene  and
isocaryophyllene displayed a higher antiproliferative power than β-caryophyllene
and β-caryophyllene oxide [143, 144], thus suggesting that the cis-configuration
of caryophyllane skeleton can be responsible for a more potent cytotoxicity [105].
Indeed,  highly  cytotoxic  sesquiterpenes,  such  as  pestalotiopsin  A  and
nanocaryophyllene  B,  possessed  a  cis-ring  [105].
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An  involvement  of  apoptotic  cell  death  has  been  also  associated  to  the
antiproliferative  activity  of  caryophyllane  sesquiterpenes;  particularly,  the
proapoptotic effects of β-caryophyllene have been associated to the activation of
mitochondrial-mediated pathways, DNA fragmentation, down-regulation of anti-
apoptotic, up-regulation of pro-apoptotic genes and reduced metastasizing power
[105, 145 - 147]. A switch from autophagy to apoptosis has been also reported in
glioblastoma  cells  [148].  However,  these  effects  did  not  occur  at  low
concentrations of β-caryophyllene, thus suggesting a dose-dependent regulation of
apoptosis  [149].  Similarly,  α-humulene  and  β-caryophyllene  oxide  produced
proapoptotic  effects  in  different  cancer  cells  [150].

A  downregulation  of  JAK1/STAT3,  NF-kB  and  PI3K/AKT/mTOR/S6K1
signallings  has  been  associated  with  the  proapoptotic  effects  of  caryophyllane
sesquiterpenes in cancer cells [145, 149, 151, 152]. Moreover, apoptosis induced
by β-caryophyllene has been found associated with a cannabinoid CB2 receptors
(CB2R) modulation [148]. Indeed, the compound is known to act as an agonist of
CB2R  and  as  a  modulator  of  other  targets  of  endocannabinoidome,  such  as
peroxisome  proliferator-activated  receptors  (PPARs)  [153,  154].

An  activation  of  CB2R  by  β-caryophyllene  has  been  highlighted  in  different
models  of  inflammatory  diseases  (such  as  pain,  neurodegeneration,
atherosclerosis,  anxiety,  chronic  inflammation,  metabolic  ailments,  arthritis,
ulcerative colitis, autoimmune diseases and some types of cancer), and is involved
in its anti-inflammatory and antinociceptive effects [105, 155 - 166]. Similarly,
anti  inflammatory  properties  along  with  a  modulation  of  CB2R  have  been
reported for β-caryophyllene oxide and α-humulene, albeit less characterized [167
-  171].  A  modulation  of  different  pro-inflammatory  pathways,  such  as  iNOS
(inducible nitric oxide synthase), TNF-α (tumor necrosis factor-alfa) and NF-κB
(nuclear  factor-κB),  interleukin  1  beta  (IL-1β),  interleukin-6  (IL-6),
cyclooxygenase  1  (COX-1),  and  cyclooxygenase  2  (COX-2),  and  redox
signallings  (e.g.  Nrf2  and  GSH)  has  been  associated  with  anti-inflammatory
effects of these caryophyllane sesquiterpenes [153, 172 - 174]. Furthermore, an
inhibition  of  fatty  acid  amide  hydrolase  (FAAH),  a  further  target  of
endocannabinoidome,  has  been  associated  with  the  chemical  features  of  the
caryophyllane scaffold [175]. On the basis of this evidence, the anti-inflammatory
activity of these sesquiterpenes, especially β-caryophyllene, could be a result of a
multitarget modulation, including FAAH and COX-2 enzymes and CB2Rs [175].

Anti-inflammatory  properties  along  with  antioxidant  effects  also  mediated  the
cytoprotective and chemopreventive activity of these sesquiterpenes in different
preclinical models [105, 172, 176 - 185]. Particularly, β-caryophyllene showed to
counteract  the  oxidative,  genotoxic  and  proapoptotic  damage  induced  by
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anticancer  drugs  in  epithelial  cells  [149,  183  -  185].  Comparing  the  effects  in
noncancerous cholangiocytes and those in Mz-ChA-1 cholangiocarcinoma cells,
the  sesquiterpene  produced  mild  genoprotective  effects  towards  DNA-damage
induced by doxorubicin, likely due to defective DNA repair systems [149]. This
suggested a dual action of β-caryophyllene as cytoprotective in normal cells and
chemosensitizer  in  cancerous  ones  [149].  The  genoprotective  properties  of  β-
caryophyllene and β-caryophyllene oxide have been investigated in both bacterial
and mammalian cells against different carcinogens and environmental pollutants,
such  as  cigarette  smoke  and  butts,  aromatic  amins  and  nitroarenes  [105],  and
resulted to be mediated by desmutagenic and bioantimutagenic mechanisms [34,
186, 187].

Interesting  chemosensitizing  effects  were  highlighted  for  β-caryophyllene,  β-
caryophyllene oxide and α-humulene in combination studies, in which nontoxic
concentrations  of  the  compounds  synergistically  potentiate  the  efficacy  of
different  anticancer  drugs,  such  as  doxorubicin,  sorafenib  and  paclitaxel  [105,
144,  185,  188].  Potentiation  of  anticancer  drug  activity  by  caryophyllane
sesquiterpenes  has  been  mainly  ascribed  to  the  inhibition  of  efflux  pumps,
especially  P-glycoprotein  (Pgp),  MRP1 and  MRP2 transporters.  A  mechanistic
study  revealed  that  β-caryophyllene  and  β-caryophyllene  oxide  inhibited  both
function  Pgp  and  expression  of  Pgp  [189].  Moreover,  a  direct  interaction  of
caryophyllane  scaffold  in  a  hydrophobic  space  next  to  the  nucleotide  binding
domain  of  the  protein  was  highlighted  by  a  molecular  docking  study  [189].
Considering  that  Pgp  is  codified  by  mdr1  gene,  which  is  transcriptionally
regulated by STAT3, blocking the activation of STAT3 has been hypothesized to
be involved in the modulation of Pgp expression by caryophyllane sesquiterpenes
[105].  Owing  to  the  lipophile  nature  of  these  compounds,  a  modulation  of
membrane permeability, which in turn can interfere with function of membrane
transporters, has been also reported [26].

Caryophyllane sesquiterpenes, especially β-caryophyllene, have been reported to
modulate  glucose  metabolism  by  a  CB2R-mediated  increase  in  the  insulin
secretion  in  different  animal  models  of  diabetes  [190].  This  effect  was  found
associated  with  improved  levels  of  antioxidant  enzymes,  thus  confirming  the
antioxidant  potential  of  β-caryophyllene  and  suggesting  its  ability  to  prevent
oxidative  stress  and  related  complications  of  the  diabetes  [191].  Moreover,  it
displayed hypolipidemic properties by decreasing the levels of total cholesterol,
triglycerides and low-density lipoprotein (LDL), likely through affecting HMG-
CoA reductase activity [192 - 194].

The interesting healing properties of caryophyllane sesquiterpenes are limited by
their  high  lipophilicity  and  poor  bioavailability,  which  can  lead  to  inconstant
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biological  responses.  To  overcome  this  drawback,  different  pharmaceutical
formulations,  including  nanoparticles,  liposomes,  and  cyclodextrins  have  been
proposed [105], albeit at the moment further studies are needed.

SESQUITERPENE LACTONES

Chemistry and Distribution in Nature

Sesquiterpene lactones (SLs) are chemically distinct from other sesquiterpenoids.
Indeed,  besides  being  constituted  of  three  isoprene  units  arranged  by  cyclase
enzymes in several characteristic ring systems, they possess one or more γ-lactone
rings formed by the action of oxidase enzymes, which determines the formation of
the characteristic and peculiar structures present in nature (Fig. 7) [195].

Fig. (7).  Biosynthesis of guaianolide-type sesquiterpenes.

According  to  lactone  ring  annulations,  SLs  can  be  divided  into  two  classes,
namely 6,12- (e.g., costunolide, parthenolide, santonin, matricin) and 8,12-olides
(e.g., inunolide, alantolactone, thapsigargin, helenalin) (Fig. 8) [196].

However, SLs differ each other also for the type and position of the substituents,
as well as the size of the non-lactone ring. Based on these structural differences,
SLs  can  be  divided  into  several  subclasses,  among  which  the  major  are
represented  by  eudesmanolide  with  a  6/6  bicyclic  structure,  guaianolide  and
pseudoguaianolide both having a 5 and 7 ring pattern, germacranolide with a 10-
membered ring, and xanthanolide which presents a non-cyclic carbon chain and a
seven-membered ring (Fig. 9) [197]. There are also several minor types that are
described  by  different  authors,  namely  bisabolenolides,  drimanolides,
eremophilenolides, fukinanolides, elemanolides, germafurenolides, tutinanolides,
and cadinanolides [198].
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Fig. (8).  Examples of sesquiterpene lactone chemical structures.
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Fig. (9).  Structure skeleton of some subclasses of sesquiterpene lactones. Modified from Nunez, 1992 [201].

The presence of the α-methylene-γ-lactone nucleus, the α,β-unsaturated carbonyl
group,  and  other  electrophilic  sites  in  the  SL  structure  seems  to  be  important
moieties  that  influence  their  biological  properties.  Particularly,  the  activity
displayed by SLs depends on the number of alkylating groups in their structure,
being two the optimal number [197]. Both the α-methylene-γ-lactone nucleus and
the α,β-unsaturated carbonyl group act as strong alkylating agents that may react
with intracellular nucleophiles (e.g. thiol groups of proteins, cysteine residue in
GSH)  by  Michael-type  addition.  Consequently,  SLs  could  impair  cell
functionality by affecting gene regulation, protein synthesis, and cell metabolism
[199].

However,  SL  bioavailability  is  limited  by  their  lipophilicity  and  molecular
geometry [199]. Therefore, new synthetic derivatives and delivery systems have
been approached by researchers in order to exploit the advantage resulting from
the therapeutic application of these compounds [200].

SLs are colourless, bitter, and stable compounds, mainly found in species of the
plant kingdom although further structures have been highlighted in marine species
and  fungi  [199].  Particularly,  the  majority  of  SLs  (more  than  90%)  has  been
characterized  in  Asteraceae  family,  which  also  includes  common  edible  plants
such as lettuce, chicory, endive, artichokes, salsify, sunflower seed, and dandelion
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[202].  Examples  of  SLs  Fig.  8  of  biological  interest  are  represented  by
alantolactone  and  isoalantolactone  from  the  root  of  Inula  helenium  L.,
parthenolide from Tanacetum parthenium L. shoots, arglabin from Artemisia spp.
aerial  parts,  cynaropicrin  from  Cynara  scolymus  L.  leaves,  lactucin,  8-
desoxylactucin, and lactucopicrin from Cichorium intybus L. and Lactuca virosa
L. roots, and artemisinin from Artemisia annua L. leaves [198, 203 - 209].

SLs  are  also  present  in  less  amount  in  Lauraceae,  Asclepiadaceae,  Araliaceae,
Annonaceae,  and  Lamiaceae  [109].  Some  examples  are  magnolialide  and
santamarine  from Laurus  nobilis  L.  leaves,  guatterfriesols  A-C from Guatteria
friesiana (W.A. Rodrigues) Erkens & Maas stem barks, and eudebeiolides A−F
from Salvia plebeia R. Br. aerial parts [210 - 212]. In Table 3, some SLs present
in the plant kingdom are reported and divided based on their chemical structure.

Table 3. Sesquiterpene lactones present in the plant kingdom.

Compounds Plant Source/Family Part of Interest Ref.

Eudesmanolide-type sesquiterpenes lactones

Alantolactone
Isoalantolactone Inula helenium L./Asteraceae Root [203]

Artemargyinins A-F Artemisia argyi Levl. et
Vant./Asteraceae Leaves [213]

Eudebeiolides A−F
Plebeiolide C Salvia plebeia R. Br./Lamiaceae Aerial

parts
[212,
214]

Ivalin
Telekin

Carpesium divaricatum Siebold. &
Zucc./Asteraceae

Whole
plant

[215,
216]

Germacranolide-type sesquiterpene lactones

Costunolide Costus speciosus (J. Koenig) Sm./Costaceae Rhizome [217]

Enhydrin
Uvedalin

Polymatin B

Smallanthus sonchifolius (Poepp & Endl.) H.
Robinson/Asteraceae Aerial parts [218]

Laserolide Laser trilobum (L.) Borkh/Apiaceae Roots [219]

Parthenolide Tanacetum parthenium L./Asteraceae Shoots [204]

Guaianolide-type sesquiterpene lactones

Arglabin Artemisia spp./Asteraceae Aerial parts [205]

Cynaropicrin Cynara scolymus L./Asteraceae Leaves [206]

Inuviscolide Ferula communis L./Apiaceae
Inula viscosa (L.) Ait./Asteraceae

Aerial parts and roots
Young shoots [220]

Lactucin
8-desoxylactucin

Lactucopicrin

Cichorium intybus L.
Lactuca virosa L./Asteraceae Roots [207,

209]
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Compounds Plant Source/Family Part of Interest Ref.

Thapsigargin Thapsia garganica L. /Apiaceae Roots and fruits [221]

Trilobolide Laser trilobum (L.) Borkh/Apiaceae Roots [219]

Pseudoguaionolide-type sesquiterpene lactones

Hymenin
Ambrosanolide
Tetraneurin A

Parthenin
Hysterin

Confertdiolide

Partienium hysterophorus L./Asteraceae Whole plant [222]

Confertin
Neoambrosin Ambrosia spp./Asteraceae Twigs and leaves [223]

Helenalin Arnica spp.
Helenium spp./Asteraceae Flowers [197]

Mexicanin I Gaillardia megapotamica (Spreng.)
Baker/Asteraceae Aerial parts [224]

Tenulin Helenium amarum (Raf.) H.Rock/Asteraceae Leaves and stems [225,
226]

Xanthanolide-type sesquiterpene lactones

Pungiolide A, D, E Xanthium sibiricum Patr./Asteraceae Aerial parts [227]

Mogolides A, B Xanthium mogolium Kitag/Asteraceae Aerial parts [228]

Xanthalongin Arnica longifolia D.C. Eaton/Asteraceae Flowerheads [229]

Xanthinin
Xanthatin
Stizolicin

Solstitialin

Xanthium spinosum L./Asteraceae Aerial parts [230]

Cadinanolide-type sesquiterpene lactones

Artemisinin Artemisia annua L./Asteraceae Leaves [198,
208]

Spicatocadinanolide A Pseudoelephantopus spicatus (Juss.) C.F.
Baker/Asteraceae Aerial parts [231]

Pharmacological Properties

SLs  exhibit  a  wide  range  of  biological  activities,  such  as  antimalarial,
antibacterial,  antioxidant,  antitumor,  anti-inflammatory,  neuroprotective,
hepatoprotective,  and  immunomodulatory  properties  [197].  As  previously
mentioned,  the  presence  of  the  α-methylene-γ-lactone  nucleus  and  the  α,β-
unsaturated carbonyl group has a crucial role in almost all the observed biological
effects [197].

(Table 3) cont.....
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The antibacterial activity of SLs is mainly due to their lipophilicity. Indeed, they
can  easily  permeate  through  the  cell  wall  and  cell  membrane,  so  disrupting
membrane  integrity  and  potential.  This  leads  to  leakage  of  cellular  contents,
denaturation of cytoplasmic proteins,  and inactivation of cellular enzymes with
consequently bacterial cell death [232, 233]. SLs seem to possess a higher activity
against  Gram-positive  species  respect  to  Gram-negative  ones.  Helenalin  and
alantolactone (Fig. 9) are examples of SLs with antibacterial activity. Particularly,
helenalin  showed  an  inhibitory  action  against  Mycobacterium  tuberculosis  and
Corynebacterium diptheriae, while alantolactone against Staphylococcus aureus
[233,  234].  Recently,  it  has  also  been  showed  that  alantolactone  exerts  its
antimicrobial  effect  against  Staphylococcus  aureus  also  by  enhancing  its
clearance  and  modulating  host  immune  response  [235].

Several SLs have also showed to possess antimalarial activity, being artemisinin
the most representative due to its medical application. This compound is a highly
oxygenated  sesquiterpene,  containing  a  unique  1,2,4-trioxane  ring  structure,
which  is  responsible  for  the  antimalarial  activity.  Particularly,  artemisinin  is
activated  by  reduced  heme,  a  byproduct  of  hemoglobin  endocytosis  and
catabolism within Plasmodium parasite. The cleavage of the endoperoxide bridge
generates a free radical that alkylate and damage Plasmodium proteins and lipids,
leading  to  death.  This  suicide  activation  led  to  a  concomitant  10,000-fold
reduction in parasite  density in human patients  [236].  Artemisinin (Fig.  9)  was
found to be superior to conventional antimalarial drugs, such as chloroquine and
quinine,  and also completely  effective  in  the  treatment  of  chloroquine-resistant
falciparum  malaria [196]. However, recently, Plasmodium  parasites resistant to
artemisinin  have  been  highlighted  [236].  Due  to  the  low  bioavailability  of
artemisinin, which limits its effectiveness, several semisynthetic derivatives such
as artemether, arteether, and artesunate have been developed [236].

In  the  last  years,  many  natural  SLs  have  been  investigated  for  their  potential
antitumor  properties,  some  of  which  (such  as  parthenolide,  artemisinin  and  its
derivatives)  were  under  clinical  evaluations  [237  -  239].  In  vitro  and  in  vivo
studies  showed  that  these  compounds  are  able  to  inhibit  cell  cycle  and
proliferation,  and  to  induce  apoptosis  [199].  The  exact  mechanism  of  SLs
anticancer  activity  is  not  well  elucidated  yet,  but  it  is  probably  due  to  their
interaction with multiple pathways. Indeed, they act as alkylating agents leading
to  inhibition  of  key  enzymes  and  proteins  (e.g.  glutathione,  farnesyl  protein
transferase enzyme); moreover, emerging data suggest that they also determine an
overproduction of reactive oxygen species (ROS), so impairing the intracellular
redox homeostasis.  At last,  the induction of apoptosis through the inhibition of
STAT3 signalling have been recognized in different cellular and animal models of
cancer  [197,  199].  Alantolactone,  parthenolide,  arglabin,  costunolide,  and
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cynaropicrin  are  examples  of  SLs  with  anticancer  activity  [197].  Particularly,
arglabin has been used in the therapy of several cancer types (e.g.  breast,  lung,
liver,  esophageal  tumors)  in  oncological  clinics  of  Kazakhstan  and  showed  to
significantly  reduce  the  tumor  volume  in  esophageal  carcinoma  patient  [240].
Noteworthy,  alantolactone  and  costunolide  have  also  displayed,  in  vitro  and  in
vivo studies, to be potent chemosensitizing agents able to reverse the multidrug
resistance which often occur during cancer therapy [197].

At  last,  SLs  have  shown  to  be  potent  anti-inflammatory  agents  through  the
inhibition of NF-kB pathway. This protein complex regulates the expression of
many key genes involved in inflammation and human cancers, so it represents a
promising  target  for  the  development  of  new  chemopreventive  and
chemotherapeutic agents [241]. Some important SLs which have displayed anti-
inflammatory  activity  are  alantolactone,  arglabin,  costunolide,  helenalin,  and
parthenolide  [242].  Particularly,  mechanistic  studies  have  revealed  that
costunolide  and  parthenolide,  owing  to  their  α,β-unsaturated  carbonyl  group,
significantly inhibit NF-kB activation by preventing the phosphorylation of IkB,
and therefore,  sequestering the complex in an inactive form [242].  Conversely,
helenalin, which contains an α,β-unsaturated carbonyl group and an α-methylen-
-δ-lactone ring, seems to exert its effect by direct alkylation of the p65 subunit of
NF-kB without inhibition of IkB degradation. It seems that helenalin selectively
modifies the p-65 subunit of NF-kB at the nuclear level, therefore inhibiting its
DNA binding [242].

EREMOPHYLANE SESQUITERPENES

Chemistry and Distribution in Nature

Eremophilanes  are  6-carbon  bicyclic  sesquiterpenes,  containing  only  two
complete  isoprene  subunits;  compounds  carrying  a  5-membered  ring  can  be
included too [243]. They are derived from eudesmane by a methyl shift across the
ring  junction  (Fig.  10)  and  are  structurally  nonconform to  the  isoprene  rule  of
Wallach, according to which terpenes are multiples of isoprene subunits, arranged
head-to-tail [243]. The first eremophilanoid sesquiterpene, namely eremophilone,
was  isolated  in  1932  from the  oil  of  Eremophila  mitchelli  Benth.  wood.  Other
similar  structures,  some  of  which  in  oxygenated  forms  (e.g.,  eremophilane
alcohol,  eremophilane  acid,  eremophilane  lactone)  have  been  identified  [108].
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Fig. (10).  Conversion of eudesmane in the eremophilane skeleton.

Owing  to  their  carbon  framework  and  stereochemistry,  eremophilanoid
sesquiterpenes  can  be  classified  in  seven  major  subgroups,  including  bicyclic
eremophilanes,  furanoeremophilanes,  4-epi-eremophilanes,  nootkatanes  (or
bicyclic  7-epi-eremophilanes),  tricyclic  7-epi-eremophilanes,  ishwarenes,  and
noreremophilanes  Table  4.

Table 4. Major groups of eremophilane sesquiterpenes and their occurrence in plant kingdom.

Compounds Plant source/Family Part of interest Ref.

Bicyclic Eremophilanes

Alloeremophilone Eremophila mitchelli Benth./Scrophulariaceae Heartwood [244]

Eremoligenol Ligularia fischeri Ledeb. Turcz./Asteraceae Root [245]

Eremophilene

Petasites albus L. Gaertn/Asteraceae
Leaves, flower

stems and
rhizomes

[246]

Petasites hybridus (L.) G. Gaertn., B. Mey &
Scherb/Asteraceae

Leaves, flower
stems and
rhizomes

[246]

Petasites japonicus (Siebold & Zucc.)
Maxim./Asteraceae Rhizome [247]

Pogostemon cablin Benth (patchouli oil)/Lamiaceae Leaves [248]

Valeriana officinalis L./Valerianaceae Root [249]

Eremophilone Eremophila mitchelli Benth./Scrophulariaceae Root [244]

Fukinone Petasites japonicus (Siebold & Zucc.)
Maxim./Asteraceae Fresh bud [246]

Petasin
Petasites hybridus (L.) Gaertn., B. Mey &

Scherb/Asteraceae Rhizome [246]

Ligularia fischeri Ledeb. Turcz./Asteraceae Root [245]

S-petasin Petasites hybridus (L.) Gaertn., B. Mey &
Scherb/Asteraceae Rhizome [246]



Sesquiterpenes: a Terpene Medicinal Chemistry Lessons From Nature, Vol. 2   25

Compounds Plant source/Family Part of interest Ref.

PR toxin Penicillium roqueforti Thom/Aspergillaceae Fungus [250]

S-Japonin Petasites japonicus (Siebold & Zucc.) Maxim. var.
Aichiwasebuki/Asteraceae Leaves [246]

Warbugiadione Warburgia ugandensis Sprague/Canellaceae Heartwood [251]

Xylarenona A-B Xylaria Hillex ex Schrank/Xylariaceae Fungus [252]

Furanoeremophilanes type - Butenolactones

Bieremoligularolide Ligularia muliensis Hand.-Mazz./Asteraceae Root [253]

Eremophilenolide Petasites hybridus (L.) G. Gaertn., B. Mey &
Scherb/Asteraceae Rhizome [246]

Ligularenolide Ligularia sibirica L. Cass./Asteraceae Leaves [254]

Petasitolide A
Petasitolide B

S-Petasitolide A
S-Petasitolide B

Petasites hybridus (L.) G. Gaertn., B. Mey &
Scherb/Asteraceae Rhizome [246]

Senecio aegyptius L./Asteraceae Flowering plant [255]

Furanoeremophilanes type - Furanolactones

Adenostylone Adenostyles alliariae (Gouan) A. Kern./Asteraceae Rhizome [256]

Berkeasmin A Paraphaeosphaeria O. E. Erikss./Didymosphaeriaceae Fungus [257]

Decompostin Psacalium decompositum (A. Gray) H. Rob &
Brettell/Asteraceae Roots [258]

Euryopsol Euryops spp./Asteraceae Resin [259]

Furanofukinol Petasites japonicus (Siebold & Zucc.) Maxim. var.
Aichiwasebuki/Asteraceae Rhizome [247]

Furanojaponin Petasites japonicus (Siebold & Zucc.) Maxim. var.
Aichiwasebuki/ Asteraceae Rhizome [247]

Furanoligularenone
Ligularia fischeri Ledeb. Turcz., Ligularia sibirica L.

Cass., Ligularia pleurocaulis Franchet/Asteraceae Root [260]

Senecio nemorensis L. var. Bulgaricus/Asteraceae Rhizome [261]

Furanopetasin Petasites hybridus (L.) G. Gaertn., B. Mey &
Scherb/Asteraceae. Rhizome [246]

Isoadenostylone Adenostyles alliariae (Gouan) A.Kern./Asteraceae Rhizome [256]

Ligularone Petasites japonicus (Siebold & Zucc.)
Maxim./Asteraceae Aichiwasebuki/Asteraceae Rhizome [247]

Ligularia fischeri Ledeb. Turcz./Asteraceae Roots [262]

Nemosenin-A, -B, -C, -D Senecio nemorensis L. var. fuchsii/Asteraceae Rhizome [261]

Petasalbin
Petasites albus L. Gaertn./Asteraceae Rhizome [246]

Ligularia virgaurea (Maxim.) Mattf./Asteraceae Roots [263]

Senemorin Senecio nemorensis L. var. fuchsii/Asteraceae Rhizome [261]

(Table 4) cont.....
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Compounds Plant source/Family Part of interest Ref.

Warbugin Warburgia ugandensis Sprague/Canellaceae Heartwood [251]

Tricyclic 7-epi-Eremophilanes

α-Ferulene Ferula communis L./Aspiaceae Latex [264]

Aristolone Aristolochia ringen Vahl./Ristolochiaceae Roots [265]

Calarene

Acorus calamus L./Acoraceae Rhizome [266]

Dipterocarpus dyeri Pierre/Dipterocarpaceae Resin [267]

Nardostachys jatamans (D. Don) DC./Valerianaceae Roots [268]

Valeriana jatamansi Jones/Valerianaceae Roots and
rhizome [269]

Calarenol Nardostachys jatamans (D. Don) DC./Valerianaceae Roots [268]

Debilone Aristolochia debilis Siebold. & Zucc./Aristochilaceae Roots [270]

Ishwaranes

3-Ishwarone Peperomia scandens Ruiz & Pavon/Piperaceae Aerial parts [271]

Ishwarane
Aristolochia indica L./Aristochilaceae Roots [270]

Corallocarpus epigaeus Benth. ex
Hook.F./Cucurbitaceae Roots [272]

Ishwarol Aristolochia indica L./Aristochilaceae Roots [270]

Ishwarone
Aristolochia indica L./Aristochilaceae Roots [270]

Corallocarpus epigaeus Benth. ex
Hook.F./Cucurbitaceae Roots [272]

Noreremophilanes

Bakkenolide A, B, C, D,
E

Petasites japonicus (Siebold & Zucc.) Maxim. var.
Aichiwasebuki/Asteraceae Leaves [273]

Senecio aegyptius L./Asteraceae Flowering plant [255]

Nootkatanes

Aristolochene Aristolochia indica L./Aristochilaceae Roots [270]

Bicyclovetivenol Chrysopogon zizanioides L. Roberty/Poaceae Roots [274]

Nootkatene and
Nookatone

Chamaecyparis nootkatensis (D. Don)
Spach/Lauraceae Heartwood [275]

Chrysopogon zizanioides L. Roberty/Poaceae Roots [274]

Valencene
Chamaecyparis nootkatensis (D. Don)

Spach/Lauraceae Heartwood [275]

Chrysopogon zizanioides L. Roberty/Poaceae Roots [274]

α-Vetivone
β-Vetivenene
γ-Vetivenene

Chrysopogon zizanioides L. Roberty/Poaceae Roots [274]

4-epi-Eremophilanes

(Table 4) cont.....
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Compounds Plant source/Family Part of interest Ref.

Capsidiol
Capsicum annuum L./Solanaceae Fruits [276]

Nicotiana tabacum L./Solanaceae Leaves [277]

Among eremophilane sesquiterpenes,  furanoeremophilanes contain a furan or a
modified furan ring, fused onto the bicyclic eremophilane system, and are further
classified as butenolactones and furans; moreover, ishwarenes are a small group
of  tetracyclic  sesquiterpenes,  related  stereochemically  to  nootkatane  [108].
Chemical structures of some eremophilanoid sesquiterpenes are displayed in Fig.
(11).  Eremophilane sesquiterpenes are produced from several  plant species and
fungi  [278].  They  have  been  identified  in  about  twenty  genera  of  Asteraceae
family, mainly Ligularia, Senecio, Cacalia and Petasites, being also considered
their  chemotaxonomic markers [108].  Moreover,  eremophilane-like compounds
have been found in other plant families, among which Valerianaceae, Lamiaceae
and Canellaceae [243]. Some compounds have been detected both in plants and in
fungi;  for  instance,  petasol  is  produced  by  Penicillium  spp.  and  is  a  typical
constituent  of  Petasites  spp.  too,  while  mairetolide  F  has  been  found  both  in
Xylaria spp. and in Senecio mairetianusDC [278].

Pharmacological Properties

Along  with  their  unique  structural  features,  eremophilane  sesquiterpenes  have
displayed a  number  of  interesting biological  activities,  including antimicrobial,
antiproliferative, anti-inflammatory and antiallergic [108]. Recently, a modulation
of  glucose  and  lipid  metabolism,  which  suggests  a  possible  interest  for  the
treatment of metabolic diseases, has been reported, although further studies are
required in confirmation [279, 280].

Antibacterial  properties  of  eremophilane  sesquiterpenes  have  been  displayed
against both Gram-positive and Gram-negative bacteria, such as Bacillus subtilis,
Pseudomonas  aeruginosa,  Staphylococcus  aureus  and  Escherichia  coli  [108].
Particularly, dacrymenone, a compound obtained by fermentation of Dacrymyces
spp., showed antibacterial and antifungal activities against some filamentous fungi
(e.g. Aspergillus ochraceus and Cladosporium cladosporioides) [281]. Antifungal
activities  have  been  also  reported  for  capsidiol,  an  eremophilane  sesquiterpene
found in many solanaceous species, and its derivatives [277].

(Table 4) cont.....
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Fig. (11).  Examples of eremophilane sesquiterpene chemical structures.

Eremophilane-type sesquiterpenes were also found to possess a broad-spectrum
but  moderate  cytotoxic  activity  in  different  human  cancer  cell  lines,  including
liver (HepG2 and SMMC-7721 cells), lung (A549 cells), ovarian (HO-8910 cells),
cervical  (HeLa  cells),  prostate  (PC3  cells)  and  leukemic  (HL60,  SMMC7721)
[198, 282 - 284].
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A  number  of  compounds  have  been  highlighted  to  possess  anti-inflammatory
properties, being able to affect the release of a variety of inflammatory mediators
and key signallings [108]. Particularly, furanoligularenone, butanoeremophilanes,
acremeremophilanes B-F showed inhibitory effects against the nitric oxide (NO)
production  induced  by  lipopolysaccharide  (LPS)  in  murine  macrophages  [260,
277]. Moreover, the compounds were able to affects the LPS-induced expression
of  iNOS  and  COX-2  and  the  activation  of  the  NF-kB  pathway  [108,  277].
Similarly, culcitiolides B and C, isolated from Senecio culcitioides  were shown
able  to  inhibit  the  NF-kB  activation  [285],  while  nigriterpene  C  and
periconianones,  produced  by  Xylaria  nigripes  and  Periconia  spp.  fungi
respectively, inhibited the LPS-induced NO production in murine brain microglial
cells [278].

Anti-inflammatory effects were also reported for the extracts (e.g. alcoholic and
ethyl  acetate)  of  Senecio  spp.,  characterized  to  contain  eremophilane
sesquiterpenes,  in  carrageenan-induced  rat  hind  paw  oedema  assay  [108].
Furthermore,  an  extract  from  the  leaves  of  Petasites  hybridus  (L.)  Gaertn.,  B.
Mey. et Scherb. (namely Ze339), containing petasin, neopetasin, and isopetasin,
produced  anti-inflammatory  effects,  by  inhibiting  the  production  of  IL-8  and
eicosanoid LTB4 in allergen-challenged patients [286]. Modulation by Ze339 of
pro-inflammatory mediators has been found associated to a reduced activation of
STAT-signalling  pathways  in  primary  human  nasal  cells;  however,  the
contribution  of  petasins  was  not  clarified  [287].  Conversely,  the  contents  of
petasin  and  isopetasin  did  not  affected  the  anti-inflammatory  power  of  some
lipophilic  extracts  from  rhizomes  of  Petasites  hybridus  [288].

Petasin,  isopetasin,  S-petasin  and  S-isopetasin  were  also  reported  to  possess
spasmolytic  activity,  being  S-petasin  the  most  potent  compound  [289].
Nonspecific antispasmodic and antimuscarinic mechanisms have been associated
to  the  relaxant  effects  of  S-petasin  and  S-isopetasin  [290].  The  antimuscarinic
effects of S-isopetasin have been mainly due to a block of tracheal muscarinic M3
receptors, instead of cardiac muscarinic M2 ones [291]. Moreover, an antagonism
of L-type voltage-dependent Ca2+ channel activity by S-petasin in vascular smooth
muscle  cells  was  demonstrated,  thus  suggesting  a  possible  interest  in  the
management of hypertension [292]. Depressant effects on the cardiac contractile
function, along with antihypertensive effects, have been reported for S-isopetasin
too [293]. Among eremophilane sesquiterpenes, fukinone, 2-β-hydroxyfukinone
and  capsidiol  were  shown  to  suppress  smooth  muscle  constriction  induced  by
different  agents,  likely  by  inhibiting  the  Ca2+  influx  [294,  295].  Myorelaxant
effects of eremophilane sesquiterpenes can be usefully exploited to counteract the
airway  hyperresponsiveness  induced  by  allergens.  Indeed,  S-petasin  has  been
found  able  to  suppress  the  increased  levels  of  inflammatory  cells  (e.g.,
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lymphocytes, neutrophils, eosinophils) and cytokines, induced by ovalbumin in a
murine model of allergic asthma; moreover, it reversed the lowering of IgG2a in
serum  of  treated  mice  and  competitively  inhibited  the  activity  of
phosphodiesterases  (PDEs)  3  and  4  [296].  Similarly,  inhibition  of  the  antigen-
induced degranulation of β-hexosamidase, LPS-induced iNOS expression and NO
production by S-petasin were highlighted in mouse peritoneal macrophages, thus
suggesting  potential  usefulness  in  the  treatment  of  asthma  [297].  On  the  other
hand,  the  compound  inhibited  leukotriene  synthesis  in  eosinophils  and
neutrophils,  and  the  earlier  signalling  events  initiated  by  G  protein-coupled
receptors in granulocytes [298, 299]. Although clinical trials have been performed
to assess the efficacy of some petasin-based extracts as antiallergy treatments, the
true  contribution  of  the  pure  compounds  remains  to  be  clarified  [299].  Among
eremophilane  sesquiterpenes,  eremoxylarins  A  and  B  (from  Xylariaceous
Endophytic fungus YUA-026) were also revealed to possess immunosuppressive
properties by inhibiting calcineurin (a protein phosphatase known to play a key
role  in  the  activation  of  the  T-cells  of  the  immune  system)  without  affecting
immunophilins  [300].  This  suggests  a  possible  interest  for  the  development  of
immunosuppressants  and  anti-allergic  drugs  [108].  Owing  to  the  relaxing  and
anti-inflammatory effects, isolated petasins (and their isomers isopetasins) have
been evaluated for the antimigraine effects [301].

Preclinical  evidence  has  suggested  that  petasin  and  isopetasin  can  affect  the
release of calcitonin gene related peptide (CGRP), thus modulating its nociceptive
effects.  Moreover,  an  inhibitory  effect  by  petasin  and  isopetasin  on  subtypes
calcium  conducting  transient  receptor  potential  channels  TRPA1  and  TRPV1
could be involved in the lowered CGRP levels [301]. Moreover, the activation of
TRPA1  channels  by  isopetasin  can  induce  the  excitation  of  neuropeptide-
containing  nociceptors,  with  a  marked  heterologous  neuronal  desensitization
[302].  Such  analgesic  effects  along  with  the  anti-inflammatory  and  vascular
relaxant activities may contribute to the anti-migraine effects of petasins [303].
Petasin-based  herbal  extracts  from  Petasites  spp.  have  been  mostly  studied  as
migraine  preventive  treatments:  Petadolex®,  a  proprietary  CO2  extract  from the
root  of  P.  hybridus  (butterbur),  containing  ≥15%  of  a  mixture  of  petasin,
isopetasin,  neopetasin,  was  shown  to  significantly  reduce  migraine  attacks,
especially  after  four  months  of  treatment,  in  placebo-controlled double-blinded
clinical  investigations  [304,  305].  Despite  the  recognized  clinical  efficacy  of
Petadolex® [304], the occurrence of some cases of liver injury, mainly ascribed to
the presence of pyrrolizidine alkaloids, leads to the product withdrawn in Europe
due to safety concerns, although the actual mechanisms of the adverse reactions
and the role of butterbur extract and petasins remain to be clarified [306, 307].
Recent  studies  highlighted  that  petasins  are  subjected  to  an  extended  liver
metabolism to petasols, and that the presence of other herbal phytochemicals can
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change  the  metabolic  pathway  producing  different  metabolic  derivatives:
therefore,  characterizing  represents  a  key  issue  to  predict  the  metabolic  fate  of
petasins [308].

Safety and Toxicological Concerns of Sesquiterpenes

Besides the huge range of biological properties ascribed to sesquiterpenes, some
safety  concerns  have  been  reported,  especially  for  sesquiterpene  lactones  and
eremophilanes.  Conversely,  caryophyllane  sesquiterpenes  have  been  shown  to
possess low toxicity, and so they are approved as food additives, fragrances, and
as cosmetic  ingredients  [105].  Regarding sesquiterpene lactones,  possible  toxic
effects, including alkylation of protein, nucleic acids, and glutathione, oxidative
stress, antagonism of GABAA and glycine receptors, inhibition of SERCA (Sarco-
Endoplasmic  Reticulum  Calcium  ATPase)  pumps,  epigenetic  machinery
deregulation, and hypersensitivity induction, have been reported [309].  Contact
sensitization and systemic allergic reactions have been also described in humans
[310]. These reactions have been mainly ascribed to the ability of sesquiterpene
lactones (e.g., thapsigargin) to increase cytoplasmic calcium concentrations, as a
consequence  of  SERCA  pump  inhibition,  thus  leading  to  extensive  mast  cell
degranulation and histamine release [309]. Alkylating sesquiterpene lactones can
also  induce  allergic  contact  dermatitis  by  reacting  with  SH  protein  residues,
through their  α-methylene-γ-lactone moiety (e.g.,  parthenolide),  thus forming a
carrier-hapten  complex (antigen)  that  is  recognized by the  immune system and
elicits a cell-mediated, delayed type (type IV) hypersensitivity reaction [309].

Recently, several preclinical studies have shown that some sesquiterpenes (e.g.,
zederone, germacrone) could exert liver toxicity, through the formation of reactive
metabolites,  with  increased  reactive  oxygen  species  and  impaired  antioxidant
defenses  [311].  Moreover,  liver  injury  has  been  associated  with  the  use  of  P.
hybridus extracts, characterized for the petasin content [306]. On the other hand,
preclinical  data  did  not  highlight  toxicity  risks  due  to  the  use  of  petasins  (or
petasin-based  herbal  extracts)  at  therapeutic  levels  [306].  Considering  that
terpenes  can  enter  the  human body by  oral  absorption,  penetration  through  the
skin,  or  inhalation,  leading  to  measurable  blood  concentrations  [309],  their
toxicological investigations are an urgent need in order to ascertain the safety of
their use.

CONCLUDING REMARKS

Natural  sesquiterpenes  are  of  great  interest  in  pharmacological  and  medicinal
chemistry  research  due  to  their  unique  chemical  features  and  multifaceted
bioactivities. Some compounds, such as parthenolide and artemisinin derivatives
have highlighted pleiotropic  anticancer  effects,  which have led  to  their  clinical
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evaluation;  however,  standardized  methodologies  and  high-quality  studies  are
needed  to  achieve  convincing  results.  For  other  substances,  despite  their
promising properties, some bioavailability and stability issues have limited their
application  in  practice,  thus  suggesting  the  need  for  medicinal  chemistry  or
pharmaceutical  interventions  in  order  to  overcome  these  drawbacks,  and
effectively  exploit  their  pharmacological  power.  Novel  findings  have  also
displayed a potential interest for some sesquiterpenes (e.g.,  β-caryophyllene, S-
isopetasin)  as  antidiabetic  and  hypolipidemic  agents,  which  could  represent  an
important  alternative  strategy  in  the  management  of  dysmetabolic  diseases,
although future deep investigations are needed. The wide diffusion in the nature
of sesquiterpenes enables to approach their extraction by several sources, which
include  marine  species  and  fungi,  along  with  waste  biomass  to  support
pharmacological studies or hemisynthetic processes in a recycling and sustainable
approach. Altogether, the collected evidence strengthens the interest for natural
sesquiterpenes in the pharmacological, pharmaceutical and medicinal chemistry
field.
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CHAPTER 2

From  Δ9-THC  to  Synthetic  Cannabinoids:  Multi-
Faceted  Therapeutic  Agents  and  Versatile
Scaffolds  for  Drug Discovery

1 University of Antwerp, Laboratory of Medicinal Chemistry, Antwerp, Belgium
2 Royal College of Surgeons in Ireland, Department of Chemistry, Dublin, Ireland

Abstract: Cannabis sativa L. has been used for millennia by humans for medicinal,
ritual  and  recreational  uses.  Commonly  known  under  its  dried  form  (flowers  and
leaves)  as  marijuana,  this  plant  produces  hundreds  of  phytomolecules,  including
phytocannabinoids, terpenes and flavonoids. Over the past decades, it is most abundant
and most  therapeutically  relevant  component,  (-)-trans-Δ9-tetrahydrocannabinol  (Δ9-
THC)  has  generated  considerable  interest  due  to  its  various  therapeutic  properties.
Most of them result from the interaction with two G-protein coupled receptors named
cannabinoid  receptors  (CB1  and  CB2).  This  chapter  gives  a  broad  overview  of  the
main structural investigations performed on the natural scaffold of Δ9-THC in order to
modulate  the  affinity  for  the  cannabinoid  receptors  and,  potentially,  its  therapeutic
properties. The design of several synthetic cannabinoid derivatives will be presented,
and their structure-activity relationships will be analysed.

Keywords:  Cannabinoids,  Cannabinoid  Receptors,  Structure-Activity
Relationship,  Synthesis,  Δ9-THC,  Δ8-THC,  Therapeutic  Application.

INTRODUCTION

HISTORY OF CANNABIS SATIVA L.

Cannabis sativa L. is considered a very unique plant due to its history, chemistry,
pharmacology, toxicology, and deep social impact. Cannabis sativa L. belongs to
the  family  of  Cannabaceæ  which  includes  only  two  genera  (Cannabis  and
Humulus). The various subspecies of C. sativa L. identified so far mostly reflect
the chemotype or geographical variants of a single taxonomic entity rather than
distinct  species  [1]. It  is  one  of  the  best  characterized  plant  varieties with an
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inventory  of  at  least  489  natural  compounds  identified  so  far  [2],  comprising
many  different  chemical  classes,  such  as  mono-  and  sesquiterpenes,  sugars,
steroids,  flavonoids,  hydrocarbons,  nitrogen  compounds,  and  especially
cannabinoids, which are terpenophenolic compounds. Marijuana, a drug derived
from Cannabis sativa L., is an illicit substance made mainly of the dried flowers
and  leaves  of  the  plant  which  is  sold  in  the  illegal  market.  Despite  the
prohibitions, marijuana is the most cultivated, trafficked, and consumed drug in
the world. This versatile crop has been used for millennia by humans, not only for
recreational or ritual purposes but also for medicinal uses. Whereas its medicinal
and  psychoactive  properties  were  well  known  for  thousands  of  years,  the
elucidation of the mechanisms of actions of cannabis was only established in the
late  19th  century.  Indeed,  in  1843  Sir  William  B.  O’Shaughnessy,  an  Irish
physician, was the first to report on the medical use of cannabis, noting that hemp:
“possesses,  in small  doses,  an extraordinary power of  stimulating the digestive
organs, exciting the cerebral system, of acting also on the generative apparatus”
[3]. The report also noted the ability of hemp oil to alleviate pain and to reduce
seizures in infants. Cannabinol 1 was the first compound isolated in 1896 [4] and
was  initially  considered  as  the  active  constituent  of  cannabis.  Its  chemical
structure  was  fully  elucidated  only  in  1940  (Fig.  (1)  [5,  6]  together  with  the
isolation of several other non-cannabinoid natural products, including cannabidiol
2  (CBD)  [7].  Finally,  the  active  component  of  cannabis,  (–)-Δ9-
tetrahydrocannabinol  3  (Δ9-THC),  was  discovered  in  1964  by  Gaoni  and
Mechoulam, who reported its structure elucidation and its partial synthesis [8].

Biogenesis of Phytocannabinoids

More  than  100  natural  products  were  isolated  from  Cannabis  sativa  L.  and
characterized mostly in the 1960s and 1970s [2, 9 - 11]. These compounds have
been divided according to their structure into different classes, including the two
predominant  Δ9-THC  3  and  CBD  2,  Cannabinol  1  (CBN),  but  also  ∆8-trans-
tetrahydrocannabinol 4 (∆8-THC), Cannabigerol 5 (CBG) and Cannabichromene 6
(CBC) among others (Fig. 1).
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Fig. (1).  Main phytocannabinoids isolated in Cannabis sativa L.

The biogenesis of phytocannabinoids is summarized in Scheme (1) [12, 13]. The
natural precursor n-hexanoylCoA 7 is transformed into olivetolic acid 9 through
the tri-fold addition of malonyl-acetate derived units 8,  followed by cyclization
and aromatization.  A specific prenyltransferase catalyzes the condensation of 9
and geranyl phosphate (GPP, 10) [14 - 16] to afford cannabigerolic acid (CBGA,
11) which gives, after decarboxylation, cannabigerol 5. It is nowadays generally
accepted  that  the  decarboxylation  step  for  CBGA  11  and  all  the  other
cannabinoids  is  non-enzymatic  and  occurs  spontaneously  during  either  the
storage,  the  extraction  or  the  purification  of  the  compounds.  The  oxidative
intramolecular cyclization of 11 leads to the formation of cannabichromenic acid
(CBCA,  12)  and,  by  decarboxylation,  cannabichromene  6.  Moreover,  the
oxidation of CBGA 11 is also leading to the formation of a link between C-1 and
C-6 of the prenyl unit, affording cannabidiol 2, the main constituent of the fiber-
type (non-psychotropic) varieties of C. sativa. This stereospecific intramolecular
cyclization occurs through the cationic intermediate 13 and is catalysed by CBDA
synthase [17], which has been isolated and characterized [18]. Another enzyme,
THCA synthase, promotes the attachment of the phenolic oxygen leading to the
formation of the tricyclic system of tetrahydrocannabinolic acid (THCA) 14. As
mentioned above, its decarboxylated analog Δ9-THC 3 is considered as an artifact
since its concentration in extracts increases during storage, while simultaneously,
the  concentration  of  THCA  14  decreases.  Numerous  analogues  sharing  this
terpenoid  structural  framework  have  been  identified:  Δ8-THC  4  shows
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isomerization  of  the  double  bond,  whereas  the  derivative  having  the  C-cycle
completely  aromatized  corresponds  to  cannabinol  1.  Δ9-THC  and  CBD  have
received the most attention in both basic science and clinical research, as they are
the most  abundant and the most  therapeutically relevant components.  CBD has
not  yet  been  approved  by  the  US  Food  and  Drug  Administration  (FDA),  but
clinical trials are underway exploring the use of CBD, branded as Epidiolex®, in
the  treatment  of  epilepsy  and  Dravet  syndrome,  a  severe  seizure  disorder  in
children  [19,  20].

Scheme (1).  Biogenesis of the main cannabinoids found in Cannabis sativa.

Total Synthesis of Δ9-THC

The  most  prominent  synthetic  pathways  to  the  Δ9-THC  scaffold  were  recently
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reported and classified in two categories: starting from chiral pool terpenoids or
concerted approaches [21]. The use of chiral pool materials typically avoids more
complex asymmetric transformations and ensures control of the stereochemistry.
Therefore, from a synthetic perspective, they could be preferred over asymmetric
methods. The first stereoselective synthesis of Δ8-THC 4 was reported in 1967 by
Mechoulam, Braun and Gaoni [22] via a Friedel-Crafts alkylation of olivetol 15
with (-)-verbenol 16, using p-toluenesulfonic acid or boron trifluoride as a catalyst
to  generate  olivetylverbenyl  17  (Scheme  2).  Repeated  treatments  with  BF3
afforded Δ8-THC 4, which was first chlorinated on the C-ring in order to perform
a base-induced elimination which gave its isomer Δ9-THC 3 [23].

Direct  synthesis  of  Δ9-THC  3  was  then  described  starting  from  p-mentha-2-
8-dien-1-ol 18 in the presence of catalyic amounts of BF3 and magnesium sulfate
as drying agent Scheme (3) [24]. Besides the generation of bis-adducts and iso-
THC derivatives, there was no Δ8-THC formation observed in these conditions.

Scheme (2).  Stereoselective synthesis of ∆8-THC according to Mechoulam, Braun and Gaoni [22, 23].

p-Menth-2-ene-1,8-diol  19,  a  structurally  comparable  starting  material,  was
activated in a similar fashion using Brønsted or Lewis acid catalysis, as reported
in Scheme (4)  [25].  Conversions up to 51% were observed and Δ9-THC 3  was
isolated with 28% overall yields by using anhydrous ZnBr2 instead of the earlier
reported boron trifluoride etherate [22, 24]. Notably, with this zinc-based Lewis
acid, the reactions were successfully conducted on multi-gram scale. Despite the
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one-step  procedures  of  both  p-mentha-2,8-dien-1-ol  18  and  p-menth-2-ene-
1,8-diol 19, these reactions produced a large variety of side-products which limits
large-scale  application [26].  The crystallisation of  the intermediate  (–)-trans-6-
hydroxy-CBD 20  allowed a cleaner cyclisation reaction with ZnBr2  to form Δ9-
THC 3, leading to the isolation of the desired product in higher yields. Recently, a
new synthetic route for the large-scale preparation of p-menth-2-ene-1,8-diol 19
was described [27]: this discovery may contribute to industrial application of 19
in the synthetic preparation of cannabinoids.

Scheme (3).  Straightforward synthesis of Δ9-THC from p-mentha-2,8-dien-1-ol 18 [24].

Scheme (4).  Lewis acid-catalyzed synthesis of 3 from p-menth-2-ene-1,8-diol 19 [22, 24].

Alternatively to the above presented approaches based on the use of chiral starting
materials,  more elaborated synthetic pathways using asymmetric catalysts were
investigated,  affording  high  levels  of  enantioselectivity  and  the  access  to
unnatural THC enantiomers [28]. In 2010, the synthesis of Δ9-THC was achieved
with  a  late  stage  trans-selective  Diels-Alder  cyclisation  Scheme  (5)  [29].  The
method was optimised by using aluminium tris(2,6-diphenylphenoxide) (ATPH)
as a Lewis acid catalyst on olefins 21 and 22 [30], which afforded the isomers of
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23  and  24  in  moderate  diastereoselectivity.  Intermediate  24  was  finally  treated
with  methylmagnesium chloride  and  cyclized  using  ZnBr2  to  obtain  Δ9-THC 3
[31, 32].

Scheme (5).  Synthesis of 3via a late-stage trans-selective Diels-Alder cyclization [31, 32].

Cannabinoid Receptors

Notwithstanding  the  well-established  traditional  medicinal  uses  of  cannabis  of
Δ9-THC, the mechanism of action of cannabinoids in humans remained a mystery
until recently. The cannabinoid receptors (CB) remained elusive for 30 years after
the discovery of Δ9-THC. Two CB receptors have been identified and cloned to
date: CB1 and CB2, which share 40% homology and the heptahelical structure of
G-protein  coupled  receptors  (GPCR)  [33].  The  activation  of  CB  receptors
promotes  an  intracellular  cascade  of  signal  pathways  which  results  in  the
interaction with potassium and calcium channels and several kinases among the
others.  As  shown  in  Fig.  (2),  either  CB1  or  CB2  promotes  a  dose-dependent
decrease  in  cellular  cyclic  adenosine  monophosphate  (cAMP)  levels  and
modulation  of  intracellular  Ca2+  and  K+  levels  [34].  The  existence  of  other
cannabinoid receptors has long been pursued, since a number of cannabinoid-like
effects persist  in CB1/CB2 knockout mice [35].  The recently identified GPR55
has  been  proposed  as  third  cannabinoid  receptor  [36,  37]  but  its  role  in  the
pharmacological  actions  of  Δ9-THC  and  in  the  physiological  effects  of
endogenous  cannabinoids  is  still  controversial.

Many  of  the  psychoactive  effects  of  Δ9-THC  appear  to  be  mediated  by  CB1
receptors  [38],  while  non-psychoactive  cannabinoids  (as  CBD)  have  very  low
affinity  both  for  CB1  and  CB2.  Δ9-THC  is  the  phytocannabinoid  showing  the
highest affinity to CB receptors, with a Ki ≈ 40 nM [13] for both CB1 and CB2.
Δ8-THC  shows  almost  equivalent  potency  as  Δ9-THC  [39],  while  all  the
cannabinoid  acid  analogues  are  free  of  central  nervous  system  (CNS)  activity
[40].  Noteworthy,  CB2  receptors  are  highly  expressed  in  some  cells  of  the
immune system and are believed to play a role in the immune cell function, thus
providing  a  rationale  to  the  immunomodulatory  properties  of  Δ9-THC  [41].
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Moreover,  CB2  receptor  is  suspected  to  be  involved  in  neuroinflammation,
atherosclerosis, and bone remodelling [42]. The localization of both CB1 and CB2
on  adipocytes,  where  their  activation  appears  to  stimulate  lipogenesis,  is
particularly interesting and may have a clinical  utility in the treatment of some
forms of  anorexia [43].  Interaction with CB receptors  has been unambiguously
associated to a number of pharmacological effects, the most important being: 1)
psychotropic  effects  (euphoria),  2)  antiemetic  effect,  3)  analgesic  effect,  4)
immunomodulation,  5)  motor  effects  (hypokinesia,  ataxia,  antispasticity).  Most
likely, the most important potential therapeutic effect associated to the interaction
with CB receptors is the analgesic effect, due to the role of CB1 receptors in the
transmission of nociceptive information in several key tissues. Δ9-THC has been
estimated  to  be  as  potent  as  morphine  in  blocking nociceptive  stimuli  in  many
animal  models  [44];  moreover,  it  can  synergistically  act  with  opioid-receptor
agonists.  Interaction  of  Δ9-THC  with  CB1  receptors  on  presynaptic  nerve
terminals in the brain results in the euphoric feelings associated with Cannabis
use. This effect could be beneficial in the treatment of depression, however further
studies are required to clarify the role of the cannabinoid system in this pathology.
Other effects of Δ9-THC in the CNS are ascribable to the presence of cannabinoid
receptors  in  other  areas:  impairment  of  cognition  and  memory  (hippocampus)
[45]; involuntary movements and partial loss of motor control (basal ganglia and
cerebellum)  [46].  Since  CB1  receptors  are  not  present  in  the  brain  region
responsible  for  respiratory  and  cardiovascular  functions,  cannabinoid
consumption  cannot  be  associated  to  an  increased  risk  of  respiratory  or
cardiovascular failures, as happens for opiates. The location of CB1 receptors in
cholinergic  nerve  terminals  of  the  gastrointestinal  tract  accounts  for  the  THC-
induced  inhibition  of  digestive-tract  motility  [47],  while  the  presence  of  CB1
receptors in the brainstem is responsible of the THC-induced inhibition of emesis
[48]. The antiemetic effect of Δ9-THC has been well established and proposed for
treatment of chemotherapy-induced emesis [49] leading to the approval in 2006 of
Nabilone (Cesamet®)  by FDA for the treatment of the emesis caused by cancer
chemotherapy  [50].  Moreover,  many  studies  have  reported  that  Δ9-THC  has  a
stimulatory effect on appetite and food intake, which can be co-adjuvant in cancer
anorexia  [51].  As  a  matter  of  fact,  synthetic  Δ9-THC  has  been  marketed  as
Dronabinol  (Marinol®)  for  the  treatment  of  anorexia  in  Acquired  Immune
Deficiency  Syndrome  (AIDS)  patients  and  chemotherapy-induced  nausea  and
vomiting.  This  effect  could  be  mediated  both  by  CB1  receptors  present  in  the
CNS or in nerve terminals and adipocytes. Table 1 summarizes the characteristics
of CB1 and CB2 together with some of their more relevant physiological effects.
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Fig. (2).  The intracellular signalling cascade activated by cannabinoid receptors – AC: Adenyl cyclase; ATP:
Adenosine  triphosphate;  cAMP:  Cyclic  adenosine  monophosphate;  MAPK:  Mitogen-activated  protein
kinases;  PKA:  Protein  kinase  A.

Table 1. The main properties of CB1/CB2 receptors and the effects which they mediate.

CB1 CB2

Type of receptor GPCR (Gi-Go)-protein coupled

Localization CNS, adipocytes, kidney, lung,
liver

Immune system cells, spleen, CNS, osteo-cells,
adipose tissue

Inducibility Low inducibility High inducibility

Mediated effects
Psychotropy
Antiemesis
Analgesy

Immunomodulation
Anti-inflammatory

Endocannabinoid System

The  discovery  of  the  CB  receptors  was  driven  by  the  desire  to  understand  the
pharmacological mechanism of cannabis, underlining that both CB receptors are
involved  in  the  extensive  signaling  pathway  known  as  the  endocannabinoid
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system. As a matter of fact, the presence of CB GPCRs suggested the existence of
endogenous  ligands  (Fig.  3)  and,  since  the  phytocannabinoids  are  highly
lipophilic,  it  was  assumed  that  these  ligands  would  likely  be  lipids.

The  identification  of  anandamide  (AEA)  25  (from  the  Sanskrit  word  ananda,
meaning  “delight,  bliss”)  by  the  Mechoulam  group  in  1992  confirmed  the
existence of an endogenous ligand for the CB receptors [52, 53]. AEA binding to
CB receptors produces similar effects to that of the exogenous phytocannabinoids,
inducing  hypothermia,  analgesia,  catalepsy,  and  appetite  stimulation  [54,  55].
Furthermore, its tissue distribution is highly similar to that of CB1: the highest
levels  of  AEA  were  found  in  the  hippocampus  and  cerebellum  and  to  a  lesser
degree in the spleen and heart tissue [56]. Soon after the discovery of AEA, the
identification  of  several  other  endocannabinoids  was  achieved:  2-
arachidonoylglycerol  26  (2-AG),  2-arachidonoyl  ethanolamine  27  and  2-
arachidonoyl glycerol ether 28 Fig. (3) [57 - 60]. Although initially considered an
insignificant component of the endocannabinoid system, the role of 2-AG 26 has
evolved  to  that  of  one  of  the  more  important  signaling  molecules  in  the  brain.
Indeed,  2-AG  has  been  linked  to  the  modulation  of  feeding,  hypotension,
neuroprotection,  cell  proliferation,  and  other  interesting  central  physiological
processes [61 - 64]. Due to the highly hydrophobic nature of endocannabinoids, it
was  initially  thought  that  they  were  synthesized  in  the  same  cells  in  which
receptor binding occurs. However, it has been later suggested that AEA and the
other endocannabinoids can travel across the synaptic membrane by either passive
diffusion or active transport, although a specific mechanism has yet to be resolved
[65 - 68]. Endocannabinoid signalling typically occurs in retrograde fashion, from
post-  to  presynaptic  neurons,  causing  a  variety  of  downstream  effects,  as
summarised  in  Fig.  (4)

Once released, endocannabinoids are rapidly deactivated by two enzymes: Fatty
Acid  Amide Hydrolase  1  (FAAH) and Monoacylglycerol  Lipase  (MAGL) [69].
The distribution of these enzymes provided additional evidence to the retrograde
signaling  mechanism,  since  FAAH  is  located  postsynaptically  and  MAGL
presynaptically. The function of CB2 is less well defined than CB1 in the system
and its role seems to be limited to that of an immunomodulatory mediator. CB2
also decreases the production of cAMP but its  inhibitory effect  on Ca2+  and K+

channels is limited with respect to CB1 [70]. For a more in-depth discussion of
endocannabinoid signaling, see the following references [68, 71 - 75].
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Fig. (3).  The main endocannabinoids and their chemical structures.

Fig. (4).  The retrograde synaptic signalling pathway mediated by endocannabinoid – Dashed arrows indicate
inactivation of endocannabinoids – [2-AG: 2-arachidonolglycerol; AA: arachidonic acid; AEA: Anandamide;
DAGs: diacylglycerols; DAGL: diacylglycerol lipase- ER, endoplasmic reticulum; MAGL: monoacylglycerol
lipase;  NAPE:  N-acyl-phosphatidylethanolamine;  NAPE-PLD:  NAPE-specific  phospholipase-D;  NT:
neurotransmitter].
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Synthetic Cannabinoids

The  term  “cannabinoids”  was  first  used  to  refer  to  the  typical  C21  group  of
compounds found in Cannabis sativa. In the last three decades, this term has been
modified  in  agreement  to  the  rules  of  pharmacological  research  to  describe:
“compounds showing affinity to the two GPCRs known as cannabinoid receptors
CB1 and CB2, independently from any structural or biogenetic relationship with
the  cannabis  meroterpenoids”  [76].  From  the  chemical  point  of  view,
“cannabinoids” comprise a broad variety of compounds and have been classified
into different categories according to their different structures [70]. In this chapter
only the derivatives of Δ9-THC, its isomers and its structurally related synthetic
analogues defined as “classical cannabinoids” will be analysed.

INFERRING  THE  STRUCTURE-ACTIVITY  RELATIONSHIP:
CLASSICAL CANNABINOIDS DERIVED FROM Δ9-THC AND Δ8-THC

The  terpenoid  structure  of  Δ9-THC  3  is  characterized  by  a  tricycle  in  which  a
central  pyran  is  fused  to  a  benzene  ring  and  a  cyclohexene  through  a  trans
junction Fig. (5).,  resulting in a slightly V-shaped arrangement of the molecule
[77,  78].  As  a  matter  of  fact,  the  C-ring  assumes  a  peculiar  flattened  chair
conformation that directs the C-9 methyl group toward the aromatic portion [79].
According to the more commonly used dibenzopyran numbering, the position of
the four alkyl pendants can be identified as: a C-3 n-pentyl chain, two geminal
methyl groups in C-6 and a CH3 on the double bond in C-9 [80]. Since Δ8–THC 4
(Fig. 5), possessing the double bond between C-8 and C-9, is almost equiactive to
the Δ9-isomer, it was often used as a lead compound for the development of new
cannabinoid agents.

Fig. (5).  The dibenzopyran numbering system of Δ9- and Δ8-THC and their Ki values on CB receptors.
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Together with the OH group in C-1 and the three central cycles themselves, the
alkyl substituents constituted the first points prone to chemical modifications to
investigate  the  structure-activity  relationship  (SAR)  of  Δ9-THC.  By  focusing
separately  on  the  key-portions  of  the  molecule,  the  most  important  synthetic
manipulations which have been performed on Δ9–THC to modulate its affinity for
the CB receptors will be analysed.

Tricycle Scaffold

Several  subsequent  modifications  have  been  carried  out  on  the  central
meroterpenoid scaffold: some reference derivatives are reported in Fig. (6). The
pyran ring was expanded (29) [81], substituted with a piperidine (30) [82] or even
removed (31)  [83]  to  generate  the  so-called  “AC-bicycle  class  of  non-classical
cannabinoids derivatives” [84].  The double bond can be moved into a different
position of the C-cycle [85], saturated or the ring itself could be substituted with a
heterocycle like piperidine (32) [86] without activity impairment. However, the
absolute configuration of the two stereogenic centers C-6a and C-10a is essential
since  the  other  stereoisomers  are  inactive  [87].  When  the  C-ring  has  been
completely saturated, the configuration of the C-9 substituent became crucial for
the activity of the cannabinoid derivatives and can affect the conformation of the
C-cycle [79, 88]. Most of the modifications to the meroterpenoid portion of the
molecule were done before the CB discovery: therefore, the tests were performed
on animal models, making the values of the in vitro assays not available.

Fig. (6).  Reference derivatives with structural modifications on the meroterpenoid scaffold.

The outline of the important SAR for this portion of the molecule is reported in
Fig. (7)
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Fig. (7).  Summary of the SAR related to the tricycle scaffold.

Fig. (8).  Modifications to C-6 geminal dimethyl function.

The summary of the important SAR for this portion of the molecule is reported in
Fig. (9).

Fig. (9).  Summary of the SAR related to the C-6 position.
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Geminal Dimethyl Function

The development of the non-classical cannabinoid CP-55,940 (31 in Fig. (6)) in
1974  from  the  investigation  performed  by  Pfizer  on  the  series  of  AC-bicycle
derivatives  [89],  revealed  that  by  inserting  a  polar  hydroxyl  group  on  the
corresponding  C-6  of  Δ9-THC,  it  was  possible  to  increase  the  potency  of  the
compounds  on the  CB receptors.  The so-called  “Southern  Aliphatic  Hydroxyl”
(SAH) [90] indeed became an important pharmacophore to develop new classical
or non-classical cannabinoids [88]. The SAH has often been varied together with
other key-positions of Δ9–THC, making difficult to interpret how the single SAH
modification  affected  the  compounds  affinity.  By keeping  constant  one  methyl
group on C-6 and progressively elongating the hydroxyalkyl chain, Tius et al. [91,
92] determined that the length was not affecting the potency of the compounds
either  on  CB1 and  CB2 (33a-35a  in  Fig.  (8)).  The  substitution  of  the  terminal
hydroxyl with iodine (33b-35b in Fig. (8)) decreased slightly the Ki values, while
a terminal CH3 was keeping the potency constant (33c-35c in Fig. (8)) [93]. The
flexibility of the alkyl chain seemed not to be crucial since derivative 8, bearing a
more rigid alkyne spacer, showed also low nM Ki values on both the cannabinoid
receptors [94].

Methyl Group in 9

As shown above  for  other  portions  of  Δ9–THC,  the  C-9  pendant  has  also  been
modified in order to investigate its effect on activity. It was demonstrated that the
presence  of  the  natural  occurring  CH3  group  is  not  fundamental  since  the
desmethyl  derivative  possessed  cannabinoid  activity  in  animal  model  [95,  96].
The introduction on the C-11 position of a hydroxyl moiety remarkably enhanced
the  potency  of  the  cannabinoid  derivatives  on  both  CB1  and  CB2.  This
modification  has  been  studied  since  the  correspondent  9-OH  derivative  of
Δ9–THC, which represents one of its major metabolites, was almost equipotent to
the parent compound in animal assays [97, 98]. Therefore, in analogy with already
done  for  the  C-6  position,  this  portion  of  the  molecule  has  been  defined  as
“Northern Aliphatic Hydroxyl” (NAH) [90],  underlining the importance of this
pharmacophore in improving the affinity of synthetic cannabinoids for CB1 and
CB2.  Taking  advantage  of  the  NAH,  several  C-9  hydroxy  or  hydroxymethyl
derivatives, structurally related to Δ8–THC, have been prepared, such as the low
nanomolar active derivative 37 in Fig. (10) [99]. Based on the evidence that two
of  the  C-11  oxidized  metabolites  of  Δ9–THC  maintained  weak  cannabinoid
activities, the insertion in C-9 of an aldehyde function (38) [100] or a carboxylic
acid moiety (39) [101] was investigated. While the aldehyde derivative 38 showed
a  Ki  value  in  the  low  nanomolar  range,  the  insertion  of  the  COOH  group  was
detrimental for the potency. Nevertheless, compound 39, named Ajulemic Acid



Drug Discovery Medicinal Chemistry Lessons From Nature, Vol. 2   71

(Resunab®),  is  currently undergoing clinical  trials for the treatment of systemic
sclerosis [102]. When the double bond of the C-ring was saturated, two types of
isomers  could  be  generated  with  respect  to  the  relative  configuration  of  the
substituent at the C-9 position: 9α- and 9β-epimers [84]. The β-conformer, with
the C-9 pendant  in  the  equatorial  position (as  verified for  compounds 40-42  in
Fig. (10)),  showed to be more potent than the correspondent α-derivative,  even
though both of them possessed cannabinoid activity [103 - 105]. The explanation
for this difference can be attributed to the presence of a critical  area in the CB
receptor active site, located at the top of the C-ring, which should not be occupied
in  order  to  avoid  detrimental  effects  from steric  hindrance  [79,  106].  A  severe
potency  increment  was  also  evidenced  when  the  C-9  was  oxidized  to  ketone
group.  The  most  important  compound  bearing  this  modification  is  Nabilone
(Cesamet®) 43, the only synthetic cannabinoid approved by FDA for therapeutic
applications [50]. Therefore, it can be speculated that functional groups capable of
accepting hydrogen bonds could be beneficial in this portion of the molecule. As a
matter of fact, the affinity value of the C-9 azido derivative 42, member of a series
of highly active photoactivatable probes for cannabinoid receptors, is also able to
accept hydrogen bonds and seems to support this hypothesis [107, 108]. However,
the ability to accept an H-bond does not seem to be a crucial property of the C-9
substituents since by shifting the double bond between the C-9 and C-11 atoms
(44),  Gareau et al.  [100] obtained a 10-fold increment in potency on both CB1
and CB2 receptors with respect to the parent compound Δ8–THC.

Fig. (10).  Chemical modifications on the C-9 position.
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The summary of the important SAR regarding the C-9 substituents is reported in
Fig. (11).

Fig. (11).  Outline of the SAR on the C-9 position.

C-1 Hydroxyl Group

From the very first SAR investigation studies, the phenolic hydroxyl moiety has
been considered as an essential structural feature for the pharmacological activity
of cannabinoids on CB1. As a matter of fact, the A and B series of 1-deoxy-Δ8-
THC derivatives, reported in Fig. (12), showed a drastic loss of affinity for this
receptor which confirmed the crucial role of this moiety for the interaction with
the  receptor  [109  -  111].  Nonetheless,  the  removal  of  the  hydroxyl  group
conferred  at  the  same  time  modest  to  significant  selectivity  for  CB2  to  these
compounds [112]. Indeed, the deoxy-Δ8-THC analogue 45 showed no affinity for
the  CB1  receptor  while  maintaining  almost  the  same  potency  of  the  parent
derivative  on  CB2  (300-fold  more  potent  on  CB2  than  CB1).  Interestingly,  by
elongating  the  alkyl  side-chain  and  branching  two  CH3  on  the  C-1’  position,
affinity  for  CB1  could  be  restored,  as  shown  by  46  and  47  [99].  The  docking
studies,  performed  on  compound  46,  indicated  that  the  orientation  of  this
compound in CB1 active site would have to be inverted relative to that of Δ9-THC
in order to account for the same receptor affinity. In this inverted orientation, the
pyran oxygen could form a hydrogen bond interaction with the residue of Lys192,
thus being beneficial for the binding to the receptor. At the same time, the longer
dimethylheptyl side-chain of 46 can be able to reach a side hydrophobic pocket
formed by Val351 and Ile354 which can further  stabilize  the  interaction [113].
Derivative  46  has  further  been  modified,  taking  advantage  of  the  NAH
pharmacophore  and  obtaining  compound  48  which,  as  expected,  showed  a
considerably  higher  affinity  for  both  cannabinoid  receptors  (Fig.  12)  [99].
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Fig. (12).  Chemical modifications of the C-1 hydroxyl group.

The  role  played  by  the  C-1  hydroxyl  function  for  the  formation  of  a  crucial
hydrogen bond interaction with CB1 was further confirmed by the affinity values
shown by the 1-methoxy series of compounds in Fig. (9) [24]. As a matter of fact,
the removal of the protic OH moiety led to a complete loss of activity on CB1 for
compounds 49 and 50, while the insertion of the NAH function (carbonyl group
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of derivative 51) maintained a µM Ki value on this receptor. As already verified
for the above reported series of 1-deoxy-Δ8-THC derivatives, the conversion of
the  phenolic  hydroxyl  to  a  methoxy  group  resulted  in  approximately  800-  and
1000-fold selectivity for the CB2 receptor over CB1 for 49 and 50 respectively,
whereas compound 51 showed 5-fold selectivity for CB2 Fig. (13).

Fig. (13).  C-1 methoxy-derivatives (49-51).

The  substitution  of  the  1-OH  moiety  with  the  strong  electron-withdrawing
fluorine led again to a  severe decrement of  potency on CB1. The 1-fluorinated
analogues 52-54  in Fig. (14) showed little or no activity on this receptor [114].
Interestingly, only a slight selectivity for CB2 over CB1 has been evidenced for
these  compounds.  Probably,  the  pronounced  electronegativity  of  F  drained  the
delocalized  electron  cloud  of  benzene  and,  as  a  consequence,  their  binding
interactions  with  the  two  cannabinoid  receptor  subtypes.

Fig. (14).  C-1 fluorinated derivatives decorated with various C-3 substituents. N.A.: not active.
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Compounds 55  and 56  in Fig.  (15),  analogues of Δ8-  and Δ9-THC respectively,
were generated by incorporating the 1-OH group into a pyran ring [115]. These
compounds were both tested before the discovery of the CB receptors, making in
vitro  analysis  unavailable  since  they  have  not  been  determined  since  then.
However,  intraperitoneal  injection  of  these  derivatives  in  animal  models
highlighted that  56  possessed a  similar  potency to  Δ8-THC,  whereas  almost  no
activity was detected for 55. As a matter of fact, the rigid tetracyclic structure of
55  forced the terpenoid scaffold into an almost flat conformation, unfavourable
for the binding to both CB receptors. On the contrary, the additional pyran ring in
compound  56  did  not  affect  the  non-planar  shape  of  the  central  scaffold.
Unfortunately, since the Ki values on the CB receptors are not available, it is not
possible  to  understand  which  of  the  two  receptor  subtypes  was  producing  the
effects evidenced in the animal assays.

Fig. (15).  Δ8- and Δ9-THC tetracycle analogues incorporating the 1-OH into a pyran ring.

The summary of the most important SAR for the 1-OH moiety of the molecule
mentioned above is reported in Fig. (16).

Fig. (16).  Summary of the SAR on the C-1 hydroxyl group.
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C-3 alkyl chain

The  C-3  n-pentyl  chain  represents  the  most  widely  modified  portion  of  the
Δ9–THC  structure.  A  remarkable  amount  of  synthetic  cannabinoids  has  been
generated  by  varying  the  C-3  pendant  and  the  modifications  performed  in  this
position  clearly  had  the  largest  influence  on  the  binding  affinity  to  both  CB
receptors [13]. The methylene chain was shortened [116] and elongated [117] Fig.
(17A). in order to determine the best length, revealing that at least 3 carbons are
necessary to maintain a good cannabinoid activity, while a potency increment can
be  achieved  by  extending  the  chain  to  6-8  carbons  (compounds  57-59  in  Fig.
(17A).

Fig. (17).  Chemical modifications to the C-3 alkyl chain.
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By  branching  small  non-polar  substituents  like  the  methyl  group  on  the  C-3
position, the activity on both CB receptors can be drastically improved. As shown
by the Ki  values of  compounds 60,  61  and 62,  63  in  Fig.  (17A  and 17B)  [118,
119], the best results were obtained by inserting them close to the phenol ring on
C-1’  and  C-2’.  Interestingly,  the  addition  of  a  second  CH3  in  C-1’  further
improved  the  affinity  of  the  compounds  to  CB1  receptor,  thus  making  the
derivatives  bearing  5-8  carbon  atoms  in  the  C-3  alkyl  chain  the  most  potent
(64-67 in Fig. 17D) [120]. From the analysis of several other studies, it became
evident  that  the  geminal  C-1’,1’-dimethyl  function  was  one  of  the  most
extensively  utilized  C-3  pendant  [13],  but  the  insertion  in  C-1’  of  bulkier
substituents  has  also  been  investigated.

As  a  matter  of  fact,  several  products  belonging  to  the  series  of  C-1’-spiro
derivatives reported in Fig. (18).  showed Ki  values in the low nanomolar range
[121 - 125]. The activity increment was explained by the presence of a subsite in
the active site  of  both CB1 and CB2 receptors at  the level  of  the benzylic side
chain  carbon  that,  if  occupied,  could  drive  to  a  tighter  interaction  among  the
cannabinoid  agent  and  the  receptors  [123,  124].  Rings  of  different  size  and
properties were investigated and all of them appeared to be tolerated inside the
pocket. The cycloalkane derivatives 68-70 in Fig. (18) showed almost the same Ki
values on CB1, while the cyclohexane derivative 71 was 10-fold less potent than
the  other  analogues  [121  -  123].  Interestingly,  moving  from  the  lipophilic
cyclopentane  derivative  70  to  the  polar  non-protic  5-termed  derivatives  72  the
potency was retained, meaning that more polar and hydrogen-bond acceptor rings
were tolerated too. On the contrary, the insertion of a secondary amine, as verified
for  the  pyrrolidine  substituted  compound  73  [125],  led  to  a  complete  loss  of
activity on both CB receptors. The methylation of the endocyclic nitrogen of 73 to
tertiary amine restored the cannabinoid activity on both CB1 and CB2, suggesting
that a protic function is not tolerated (derivative 74 in Fig. (18).

The insertion of extremely bulky lipophilic pendants directly on the phenyl ring
incremented in some instances the activity [126 - 129]. The bornyl derivative 75
in Fig. (19) showed low nanomolar Ki values on both cannabinoid receptors [127],
while its isomer 76 was almost 10-fold less active on CB1. Therefore, the cavity
of the CB receptors could be able to hold hulking moieties and, by modifying the
terpenoid scaffold/substituents connection, the activity on the receptors could be
modulated.  Indeed,  a  slight  difference  in  potency  was  obtained  by  linking  the
adamantyl residue to different carbon atoms in the series of derivatives 77-80 in
Fig. (19) [126]. Aromatic pendants could also lead to activity increment and, by
combining  a  p-substituted  phenol  moiety  with  the  C-1’,1’-geminal  dimethyl
function,  it  was possible  to obtain derivatives endowed with low nanomolar  Ki
values on CB1, such as 80 and 81 in Fig. (19) [129].
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Fig. (18).  C-1’–spiro cannabinoid derivatives.

Fig. (19).  Δ8-THC analogues incorporating bulky C-3 lipophilic moieties.
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Fig. (20).  Δ8-THC analogues bearing rigid C-3 substituents.

To  investigate  how  the  conformation  assumed  by  the  C-3  substituents  was
affecting the activity, restrictions to the alkyl chain flexibility were performed. By
saturating two methylene through the insertion of a double [117] or triple bond
[124, 130], a potency increment on CB1 was observed (compounds 82 and 83 in
Fig. (20)). These two derivatives, in which the α-β bond was oxidised to alkene
and alkyne respectively,  possessed low nM Ki  values,  probably due to  positive
interactions of these groups with the CB1 subsite mentioned above. Only when
the  alkyne  function  was  placed  as  a  terminal  position,  a  detrimental  effect  on
activity was shown (derivative 84 in Fig. (20)) [117]. On the contrary, the fusion
to the phenyl portion of a cyclohexane ring, which constricted the C-1’ and C-2’
atoms into  a  rigid  conformation,  resulted  in  a  loss  of  activity  on  CB1 receptor
[118,  131].  Only  shifting  the  alkyl  chain  toward  a  “downward  orientation”,  as
shown  in  compound  85,  the  affinity  for  the  CB  receptors  could  be  restored.
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Therefore,  restraining  the  C-3  conformers  could  be  beneficial  to  enhance  the
potency of the cannabinoid derivatives and, only when the side chain is forced to
orient toward a “lateral” direction, the loss of flexibility could lead to a potency
decrement.

Heteroatoms and other functional groups have also been evaluated as potential C-
3 pendants. In the series of terminal-substituted derivatives reported in Fig. (21A)
[132 - 136], the lipophilic non-protic substituents Br (86) [132] and CN (87) [133]
led to a considerable activity increment. The addition of a basic centre, as verified
in  compounds  89-92  [133,  136],  improved  the  potency  too.  Interestingly,  the
carboxylic derivative 88 [134] showed a marked selectivity for CB2 being 50-fold
more potent on this receptor than on CB1. In the series of derivatives reported in
Fig. (21B)., the addition of an ester function in β-position of the alkyl chain [137,
138]  left  the  cannabinoids  Ki  values  almost  unaffected  with  respect  to  the
correspondent  analogues  of  Fig.  (21A).

Fig. (21).  Δ8-THC derivatives carrying different terminal substituents on the C-3 side chain.
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The summary of the most important above mentioned SAR for the C-3 side-chain
is  reported  in  Fig.  (22).  A  clear  cut  relationship  among  the  properties  of  the
various  pendants  and  the  activity  of  the  correspondent  compounds  could  not
easily  be  highlighted.  In  fact,  a  plethora  of  substituents  possessing  different
chemical  properties  were  tolerated  or  were  able  to  improve  the  potency  of  the
cannabinoid derivatives once placed as C-3 moiety.

Fig. (22).  The main SAR related to the C-3 substituents.

Fig. (23).  Summary of the most important SAR related to the crucial positions of Δ9-THC.

Finally,  in Fig.  (23)  a  summary of the previously discussed SAR regarding the
portions that are crucial for the affinity of the cannabinoid derivatives to the CB
receptors is highlighted.
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CONCLUSION

The  natural  occurring  Δ9–THC  molecule  exemplifies  the  prototype  of  an  ideal
lead compound since the results, which were obtained thanks to several medicinal
chemistry  efforts  for  the  last  three  decades,  allowed  to  generate  a  remarkable
amount of synthetic derivatives. These chemical manipulations were mainly done
in order to achieve new compounds endowed with less psychoactive effects and
higher  affinity  for  the  CB receptors.  Despite  these  efforts,  Nabilone  is  still  the
only  synthetic  cannabinoid  drug  in  the  market  since  all  the  other  interesting
developed  derivatives  showed  psychotropic  side-effects,  which  limited  their
therapeutic applications. However, the modulation of the cannabinoid receptors
remains a promising approach to develop new analgesic drugs or for the treatment
of  pathological  conditions associated with neurodegeneration and chronic pain.
This  chapter  provides  therefore  a  review  of  the  most  promising  medicinal
chemistry investigations which can be used to guide the drug discovery of new
cannabinoid agents that could overcome the limitation of the psychotropic side-
effects.

LIST OF ABBREVIATIONS
Δ8-THC: (-)-trans-Δ8-tetrahydrocannabinol

Δ9-THC (-)-trans-Δ9-tetrahydrocannabinol

μM: micromolar

2-AG: 2-arachidonoylglycerol

AA: arachidonic acid

AC: adenyl cyclase

AEA: anandamide

AIDS: Acquired Immuno Deficiency Syndrome

ATP: adenosine triphosphate

ATPH: aluminium tris(2,6-diphenylphenoxide)

cAMP: cyclic adenosine monophosphate

CB: cannabinoid receptor

CBC: cannabichromene

CBCA: cannabichromenic acid

CBD: cannabidiol

CBDA synthase: cannabidiolic acid synthase

CBG: cannabigerol

CBGA: cannabigerolic acid

CBN: cannabinol
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CNS: central nervous system

DAGs: diacylglycerols

DAGL: diacylglycerol lipase

ER: endoplasmic reticulum

FDA: Food and Drug Administration

FAAH: fatty acid amide hydrolase 1

GPCR: G-protein coupled receptor

GPR55: G-protein coupled receptor 55

GPP: geranyl phosphate

Ile: L-isoleucine

Ki: inhibitory constant

Lys: L-lysine

MAGL: monoacylglycerol lipase

MAPK: Mitogen-activated protein kinases

NAH: northern aliphatic hydroxyl

NAPE:N-acyl-phosphatidylethanolamine

NAPE-PLD:N-acyl-phosphatidylethanolamine

n-hexanoyl CoA:n-hexanoyl coenzyme A

nM: nanomolar

NT: neurotransmitter

PKA: protein kinase A

SAH: southern aliphatic hydroxyl

SAR: structure-activity relationship

THCA: tetrahydrocannabinolic acid

Val L-valine
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CHAPTER 3

Encapsulation of Essential Oils within Lipid-Based
Formulations for Enhanced Antimicrobial Activity
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Abstract:  Aromatic  plants  have  been  used  since  ancient  times  for  their  medicinal
properties, including potent antimicrobial activity. Strong evidence indicates that plant
extracts,  in  general,  and  essential  oils  (EOs),  in  particular,  can  act  as  effective
antimicrobial agents against a wide spectrum of pathogenic microorganisms. However,
their  poor  water  solubility  and  stability,  as  well  as  their  high  volatility,  make  the
administration  of  EOs  to  achieve  the  desired  therapeutic  effects  particularly
challenging.  Therefore,  these  features  severely  limit  the  application  of  EOs  in  the
pharmaceutical field. In this context, nanotechnology-based strategies for developing
nano-scaled carriers for the efficient delivery of EOs might offer potential solutions. In
particular, considering the lipophilic nature of EOs, lipid-based nanocarriers represent
the most  suitable  vehicles  for  the effective encapsulation and delivery of  EOs.  This
chapter  provides an overview of the different  chemical  compositions due to various
endogenous  and/or  exogenous  factors  of  a   selection   of   oils  and  the  most  recent
lipid-based encapsulation strategies to enhance their antimicrobial activity and promote
their pharmaceutical application.

Keywords:  Antimicrobial  Activity,  Chemical  Composition,  Essential  Oils,
Encapsulation,  Liposomes,  Microemulsions,  Nanoemulsions,  Nanostructured
Lipid  Carriers,  Solid  Lipid  Nanoparticles.

INTRODUCTION

Essential oils (EOs) are very complex natural mixtures that can contain around 60
components at quite different concentrations. These volatile compounds extracted
from plants or plant organs like flowers, seeds, buds, leaves, fruits, wood, roots,
barks and twigs are responsible for the characteristic flavour and aroma. There are
several  methods  for  extracting  EOs:  by  use  of  liquid  carbon  dioxide  or
microwaves, by distillation (via steam and/or water) or mechanical methods,  such
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as cold pressing. The aromatic chemicals that give the typical essence to each oil
are extracted and combined with carrier oil.

EOs  can  be  applied  in  various  cases,  including  pharmaceutical  and  health
industries but are most commonly used in the practice of aromatherapy; they are
also  used  in  a  wide  range  of  consumer  goods,  such  as  soaps,  detergents,  toilet
products and cosmetics. EOs are obtained from aromatic flora or plants bearing
many  Angiospermic  families,  such  as  Rutaceae,  Lamiaceae,  Myrtaceae,
Asteraceae  and  Zingiberaceae  [1].  All  EOs  have  their  own  unique  smell  and
potential  health  benefits,  such  as  for  treating  insomnia  (lavender  oil),  as  an
antibiotic  and  antimicrobial  (peppermint  and  tea  tree  oils)  or  as  an  anti-
inflammatory  (cumin  and  rosemary  oils).  The  presence  of  a  variety  of  diverse
constituents in EOs could be responsible for wide spectrum of biological activities
of the plant.

EOs  are  products  of  an  unregulated  sector,  and  the  quality  and  their  chemical
composition can vary greatly.  In  this  regard,  it  is  very  important  that  an  EO is
pure and of high quality, that it is free of synthetic additives and that has not been
modified during the extraction process from the plant.

The main volatile constituents of EOs are terpenes, organic compounds consisting
of  multiples  of  isoprene  units  (containing  five  carbon  atoms)  and  linear-chain,
aromatic or heterocyclic compounds. Different combinations of the isoprene units
originate structurally and functionally different  classes of  terpenes [2].  When a
terpene contains oxygen, it is called a terpenoid.

Generally, hydrocarbons and oxygenated compounds such as alcohols, aldehydes,
ketones, acids, esters, and oxides are responsible for odors and the characteristic
aroma. The analytical technique useful for determining the chemical composition
of EOs is gas chromatography. There are many reports in the literature that have
contained useful information about the composition of different EOs [3 - 5]. EOs
are complex materials and multi-component systems classified into non-volatile,
semi-volatile, and volatile compounds according to their nature. Furthermore, the
chemical composition of EOs depends on the place of origin, climatic conditions,
and plant species [6]. By the analysis of EO, the following compounds are found
in varying proportions, and they are the main groups [7]:

TERPENE HYDROCARBONS

-Monoterpene hydrocarbons: found in almost all EOs and have a structure of 10
carbon atoms and at least one double bond. The 10 carbon atoms are derived from
two isoprene units.

.
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-Sesquiterpenes:  they  consist  of  15  carbon  atoms  and  have  complex
pharmacological actions.
Monoterpenes,  diterpenes,  and sesquiterpenes  are  the  main  groups  of  terpenes
found  in  spices  and  herbs;  they  have  notable  biological  activities  such  as
antimicrobial  effects  on  different  pathogens  [8,  9].

Oxygenated Compounds

• Phenols: some examples are thymol, eugenol and carvacrol. These components
have great antiseptic, antibacterial and disinfectant qualities.
• Alcohols: they are divided into monoterpene and sesquiterpene alcohols, such
as linalool, citronellol, terpineol and bisabolol.
• Aldehydes: they have antifungal, anti-inflammatory, disinfectant, and sedative
therapeutic properties.
• Ketones: they can be toxic, but they also have some great therapeutic benefits.
• Esters: like linalyl acetate, they are normally very fragrant and tend to be fruity
and their therapeutic effects include sedative and antispasmodic activities.
• Ethers: the most common are the phenolic ones, such as the anethole present in
anise.
• Oxides: the main therapeutic effect of oxides is that of expectorant, with 1,8-
cineole, commonly known as eucalyptol, the best known.

Finally, lactones and coumarins can also be found.

The chemical profile of an EO, even obtained from the same species, may differ
according to the geographical source and the harvest season of a particular plant
species and also for the same species from different regions [10 - 13]. Genotype,
interaction with the environment and agronomic conditions, such as the age of the
plant, the degree of maturity of the plant, the harvest time and the composition of
the  soil,  can  influence  the  quali-quantitative  composition  of  EO  [11,  14].
Furthermore, the extraction product can vary in quality and/or quantity depending
on the type of extraction method chosen [15].

In this regard,  Table 1  shows different chemical compositions of a selection of
EOs endowed with antimicrobial properties. They have been selected on the base
of the formulation studies reported in the following paragraphs.

NANOENCAPSULATION OF ESSENTIAL OILS

EOs represent an important part of the traditional Pharmacopeia [115]. Nowadays,
a large number of biological activities have been reported for EOs to prevent and
treat  human  diseases,  and,  in  particular,  a  lot  of  evidence  exists  on  their
antimicrobial  properties  [116,  117].
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Table 1. Chemical composition of a selection of EOs.

Plant Name
from which EOs

were Derived

Family of
Plants Origin Main Components Identified Refs.

Peppermint Lamiaceae

Shiraz, Iran

menthol (53.28%)
menthyl acetate (15.0%)
menthofuran (11.18%)

1,8-cineole (6.69%)

[16]

Jazan, (Saudi
Arabia)

menthol (36.02%)
menthone (24.56%)

menthyl acetate (8.95%)
menthofuran (6.88%)

[17]

Puli, Nantou
County, Taiwan

menthol (30.35%)
menthone (21.12%)

trans-carane (10.99%)
[18]

Cardamom
(Elettaria

cardamomum)
Zingiberaceae

Mashhad city
(Iran)

1,8-cineole (36.74%)
α-terpinyl acetate (33.07%) [19]

Plovdiv,
Bulgaria

α-terpinyl acetate (39.032%)
eucalyptol (31.534%)
β-linalool (4.829%)
sabinene (4.308%)

α-terpineol (4.127%)

[20]

Jeddah city
(KSA)

1,8-cineole (55.4%),
α-terpinyl acetate (28.6%)

4-terpineol (3.3%)
[21]

Citronella or
Cymbopogon

nardus
Poaceae

Kelantan,
Malaysia

citronellal (29.6%)
2,6-octadienal, 3,7-dimethyl-(E) (11.0%)

cis-2,6-dimethyl-2,6-octadiene (6.9%)
propanoic acid 2-methyl-, 3,7-dimethyl-2,6-

octadienyl ester, (E) (6.9%)

[22]

Dragoco
(Germany)

citronellal (27.00%)
trans-geraniol (22.78%)

citronellol (10.09%)
[23]

Malacca,
Malaysia

citronellal (11.35%)
z-citral (11.34%)

β-myrcene (6.70%)
β-trans-ocimene (6.03%)
geranyl acetate (3.82%)

limonene (3.50%)
citronellol (3.22%)

[24]



98   Medicinal Chemistry Lessons From Nature, Vol. 2 Paolicelli et al.

Plant Name
from which EOs

were Derived

Family of
Plants Origin Main Components Identified Refs.

Eugenia
caryophyllata Myrtaceae

Québec, Canada
eugenol (88.58%)

eugenyl acetate (5.62%)
β-caryophyllene (1.39%)

[25]

Ardakan, Iran
eugenol (68.9%)

trans-caryophyllene (12.6%)
eugenol acetate (12.4%)

[26]

Madagascar
eugenol (70-88%)

eugenyl acetate (4-15%)
β-caryophyllene (4-21%)

[27]

Mentha
pulegium Lamiaceae

Ribatejo,
Portugal

menthone (35.9%)
pulegone (23.2%)

neo-menthol (9.2%)
8-hydroxy-4(5)-p-menthen-3-one (2.1%)

[28]

Algeria
pulegone (70.66%)

neo-menthol (11.21%)
menthone (2.63%)

[29]

Sicily, Italy
pulegone (50.6%)

piperitenone (27.8%)
menthone (6.9%)

[30]

Nigella sativa Ranunculaceae

Tehran, Iran

trans-anethole (38.3%)
p-cymene (14.8%)
limonene (4.3%)
carvone (4.0%)

[31]

Tunisia

p-cymene (60.5%)
α-thujene (6.9%)

γ-terpinene (3.5%)
thymoquinone (3.0%)

β-pinene (2.4%)
carvacrol (2.4%)

terpinen-4-ol (2.1%)

[32]

India

p-cymene (31.4%)
thymoquinone (37.6%)

thymohydroquinone (3.4%)
α-thujene (5.6%)

[33]
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from which EOs

were Derived

Family of
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Origanum
vulgare Lamiaceae

Saudi
Arabia

carvacrol (70.2 ±1.37%)
γ-terpinene (5.6 ± 0.11%)
p-cymene (4.5 ± 0.42%)

trans-sabinene hydrate (3.8 ± 0.07%)
thymol (2.2 ±0.12%)

[34]

Turkey
carvacrol (63.97%)
p-cymene (12.63%)

linalool (3.67%)
[35]

Portugal

carvacrol (14.5%)
thymol (12.6%)

β-fenchyl alcohol (12.8%)
δ-terpineol (7.5%)

γ -terpinene (11.6%)
α-terpinene (3.7%)

[36]

Ridolfia segetum Apiaceae

Tunisia

dillapiole (47.4%)
myristicin (19.2%)

α-phellandrene (3%)
p-cymen-8-ol (1.2%)

[37]

Portugal

α-phellandrene (53.0-63.3%)
terpinolene (11.9-8.6%)

ß-phellandrene (5.5-6.0%)
dillapiol (1.9-8.0%)

[38]

Andalusia

Steam Oil: α-phellandrene (39.4-62.0%)
p-cymene (10.4-22.7%)

β -ocimene (10.2-11 .7%)
terpinolene (7.0-15.6%)

Leaf oil: α-phellandrene (61.8%-69.5%)
β-ocimene (10.7-12.0%)
terpinolene (6.0-10.7%)

[39]
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Plant Name
from which EOs

were Derived

Family of
Plants Origin Main Components Identified Refs.

Rosmarinus
officinalis Lamiaceae

Taizhou, China

1,8-cineole (26.54%)
α-pinene (20.14%)
camphor (12.88%)

camphene (11.38%)
β-pinene (6.95%)

[40]

Belgrade

1,8-cineole (43.77%)
camphor (12.53%)
α-pinene (11.51%)
β-pinene (8.16%)

camphene (4.55%)
β-caryophyllene (3.93%)

[41]

Ethiopia

1,8-cineole (23.55%)
verbenone (18.89%)
camphor (15.06%)
α-terpineol (6.43%)
isoborneol (5.68%)

tridecyl acrylate (5.57%)
linalool (3.71%)

bornyl acetate (3.57%)
trans-caryophyllene (3.36%)

terpine-4-ol (2.78%)
α-pinene (1.40%)

[42]

Lavandula x
intermedia Lamiaceae

Italy

linalool (35.8%)
1,8-cineole (19.8%)

α-pinene (8.7%)
linalyl acetate (7.5%)

myrcene (4.9%)

[43]

Romania

camphor (32.7%)
eucalyptol (26.9%)

borneol (7.11%)
caryophyllene (4.88%)

[44]

Turkey
linalool (39.43%)

1,8-cineole (12.08%)
camphor (9.21%)

[45]
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from which EOs

were Derived

Family of
Plants Origin Main Components Identified Refs.

Eucalyptus
globulus Myrtaceae

Algeria
1,8-cineole (55.29%)
spathulenol (7.44%)
α-terpineol (5.46%)

[46]

Tehran

1,8-cineole (76.65%)
ɑ-pinene (5.65%)

α-terpineol acetate (4.85%)
alloaromadendrene (3.98%)

[47]

Montenegro
Coast and

East Spanish

1,8-cineole (4.10-50.30%)
α-pinene (0.05-17.85%)

p-cymene (trace-27.22%)
cryptone (0.00-17.80%)

spathulenol (0.12-17.00%)

[48]

Citrus limon
(var. pompia) Rutaceae

Sardinia, Italy
(leaves)

limonene (256.3 mg/ml)
geranial (213.8 mg/ml)

neral (172.9 mg/ml)
cis-β-ocimene (71.7 mg/ml)

[49]

North-East
Sardinia, Italy

(favedo)

limonene (803.8 mg/ml)
geranial (31.2 mg/ml)

neral (24.9 mg/ml)
β-myrcene (20.4 mg/ml)

[50]

North-East
Sardinia, Italy

limonene (29.7%)
lilalyl acetate (20.9%)

geranial (11.1%)
linalool (11.0%)

[51]

Artemisia annua Asteraceae

Bosnia
artemisia ketone (30.7%)

camphor (15.8%)
artemisia alcohol (6.5%)

[52]

Hungary

β-selinene (12.27%)
(E)-pinocarveol (7.55%)

camphor (7.06%)
caryophyllene (5.26%)

farnesene (4.8%)

[53]

Bulgaria

α-caryophillene (24.73%)
α-cuvebene (13.53%)
α-copaene (7.42%)
α-selinene (8.21%)

artemisia ketone (8.45%)
camphor (3.61%)

[54]
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Plant Name
from which EOs

were Derived

Family of
Plants Origin Main Components Identified Refs.

Salvia triloba Lamiaceae

Amman, Jordan
1,8-cineole (45.16%)
camphor (11.53%)
γ-terpineol (4.40%)

[55]

South Brazil

α -thujone (20.1%)
camphor (12.6%)

1,8-cineole (15.7%),
β -pinene (3.95%)

[56]

Turkey

In hydrodistillation (HD) and microwave-
assisted hydrodistillation (MWHD):

1,8-cineole (52.0% and 47.5%)
camphor (10.4% and 11.8%)
α-pinene (6.0% and 5.2%)

β-pinene (3.9% and 3.2%) respectively.

[57]

Trachyspermum
ammi Apiaceae

Iran
thymol (74.2%)
p-cymene (16%)

γ-terpinene (7.1%)
[58]

Tehran
thymol (47.05%)

γ-terpinene (27.78%)
p-cymene (22.06%)

[59]

Fars
γ -terpinene (48.07%)
p-cymene (33.73%)

thymol (17.41%)
[60]

Allium sativum Alliaceae

Egypt

white-skin cultivar:
diallyl trisulfide (45.76%)
diallyl disulfide (15.63%)

purple-skin cultivar:
diallyl trisulfide (58.53%)
diallyl disulfide (22.38%)

[61]

Brazil
diallyl trisulfide (38, 81%)
diallyl disulfide (25.23%)

methyl allyl trisulfide (12.52%)
[62]

Spain

By hydrodistillation, industrial steam
distillation, and industrial hydrodistillation
diallyl sulfide (1.9–9.5%), diallyl disulfide

(20.8–27.9%), diallyl trisulfide (16.8–33.4%),
allyl methyl disulfide (4.4–8.3%), and allyl
methyl trisulfide (14.5–19.2%) respectively

[63]
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were Derived
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Ferula
gumosa Bioss Apiaceae

Iran
sabinene (40.1%)
α-pinene (14.3%)
β-pinene (14.1%)

[64]

Tehran

α-pinene (50.1%)
β-pinene (18.3%)
3-carene (6.7%)
α-thujene (3.3%)
sabinene (3.1%)

[65]

Kashan, Iran
β-pinene (60.84%)
α-pinene (9.14%)

β-phellandrene (6.94%)
[66]

Curcuma longa Zingiberaceae

Northern India

Rhyzome EO: ar-turmerone (31.7%)
α-turmerone (12.9%)
β-turmerone (12.0%)
(Z)-β-ocimene (5.5%)

Leaves EO: α-phelladrene (9.1%)
terpinolene (8.8%)
undecanal (7.1%)
p-cymene (5.5%)

[67]

Brazil
α-turmerone (42.6%)
β-turmerone (16.0%)
ar-turmerone (12.9%)

[68]

Ecuador
ar-turmerone (45.5%)
α-turmerone (13.4%)
α-phelladrene (6.3%)

[69]

Cymbopogon
flexuosus Poaceae

China
geranial (29.36%)

neral (30.39%)
caryophyllene (25.39%)

[70]

Karnataka, India

citral (64.98%)
1,7-octadien-3-ol (10.97%)

dimethyl oxatricyclo nonanone (9.44%)
nerol (2.85%)

verbenol (1.77%)
caryophyllene oxide (0.71%)

[71]

São Paulo,
Brazil

geranial (41.80%)
neral (33.25%)

geranyl acetate (4.23%)
[72]
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Citrus limon Rutaceae

Cap Bon of
Tunisia

limonene (39.74%)
β-pinene (25.44%)
α-terpineol (7.30%)

linalyl acetate (3.01%)

[73]

Algeria

limonene (61.3%)
β-pinene (9.7%)
α-citral (4.2%)

α-terpinene (3.8%)

[74]

South of Iran

linalool (30.62%),
geraniol (15.91%)

α-terpineol (14.52%)
linalyl acetate (13.76%)

[75]

Citrus sinensis Rutaceae

China
Light and cold pressed EO:
limonene (60.44%, 85.32%)

beta-myrcene (7.60%, 5.11%), respectively
[76]

Vietnam
HD and SFME extraction:

limonene (98.28%, 98.41%)
β-myrcene (1.16%, 1.17%) respectively

[77]

Greater Noida,
Uttar Pradesh

EO from leaves: cis-sabinene hydrate (35.1%)
l-limonene (30.1%)

citral (27.9%)
lavendulol (2.5%)

perillaldehyde (2.0%)
EO from fresh fruit peels: α-pinene (60.80%)

verbenone (15.40%)

[78]

Mentha spicata
(var. viridis) Lamiaceae

Khartoum,
Sudan

D-carvone (64.63%),
D-limonene (12.27%)

(-)-8-p-menthen-2-yl, acetate trans (2.59%)
cyclohexanol,2-methyl-5-(1-methylethenyl)

(2.36%)
eucalyptol (2.28%)

[79]

Shamabt, Sudan
carvone (71.98%; 84.81%; 67.62%; 78.33%)

from spearmint herb in January, April, August
and December respectively

[80]

Tunisia
carvone (50.47%)

1,8-cineole (9.14%)
limonene (4.87%)

[81]
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Pelargonium
graveolens Geraniacee

Sidi Thabet
North of Tunisia

citronellol (27.53%)
geraniol (25.85%)

6-octen-1-ol,3, 7-dimethyl-formate (8.75%)
isomenthone (6.22%)

[82]

Brazil, Egypt,
South Africa,

China, Reunion
Island-Bourbon

and Albania

geraniol and citronellol from Brazil (39.8%,
11.4%), Egypt (18.9%. 28.8%), South Africa

(38.7%, 10.8%), China (9.4%, 39.3%),
Reunion Island-Bourbon (9.6%, 22.0%),

Albania (5.5%, 40.0%)

[83]

Tajikistan

citronellol (37.5%)
geraniol (6.0%)

caryophyllene oxide (3.7%)
menthone (3.1%)
linalool (3.0%)

β-bourbonene (2.7%)

[84]

Curcuma
xanthorrhiza Zingiberaceae

Malaysia
β-curcumene (17.1%)
ar-curcumene (13.2%)

camphor (5.4%)
[85]

Thailand α-terpinolene (24.86%)
p-cymen-7-ol (12.17%) [86]

India

EO from flower and leaves:
ar-turmerone (31.0% and 46.8%, respectively)

cymen-8-ol (26.0%)
α-phellandrene (32.6%)

[87]

Matricaria
chamomilla Asteraceae

Bosnia and
Herzegovina

β-farnesene (29.8%)
α-farnesene (9.3%)

α-bisabolol and its oxide (15.7%)
chamazulene (6.4%)
germacrene D (6.2%)

spiroether (5.6%)

[88]

Iran

α-bisabolone oxide A (35.74%)
α-bisabolol oxide A (19.07%)

(Z)-β-Farnesene (6.63%)
chamazulene (6.46%)

[89]

Nepal

(E)-β-farnesene (42.2%)
α-bisabolol oxide A (22.3%)

(E,E)-α-farnesene (8.3%)
cisbicycloether (5.0%)

α-bisabolol oxide B (4.5%)
α-bisabolone oxide A (4.0%)

[90]
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Lavandula
angustifolia Lamiaceae

Xinjiang, China

linalyl acetate (28.89%)
linalool (24.30%)

caryophyllene (7.89%)
(E)-3,7-dimethylocta-1,3,6-triene (4.64%)

4-terpineol (4.04%)
acetic acid lavandulyl ester (3.49%)

borneol (2.60%)
eucalyptol (2.05%).

[91]

Algeria
1,8-cineole (29.4%)
camphor (24.6%)
borneol (4.1%)

[92]

Romania
linalool (26.783%)

terpinen-4-ol (22.143%)
3-carene (21.668%)

[93]

Thymus
daenensis Lamiaceae

Isfahan

thymol (57.4%)
carvacrol (9.8%)

β-caryophyllene (6.9%)
γ-terpinene (6.7%)
p-cymene (6.3%)

[94]

Isfahan, Iran

thymol (80.24%)
γ-terpinene (3.51%)
p-cymene (2.15%)
carvacrol (1.72%)

[95]

Isfahan, Iran

carvacrol (37.0%)
thymol (12.8%)

β-caryophyllene (7.6%)
geraniol (5.74%)

[96]

Satureja
khuzistanica

Jamzad
Lamiaceae

Iran

Wild plants’EO: carvacrol (93.9%); eugenol
(1.0%); p-cymene (0.8%); thymol (0.6%).

Cultivated plants’ EO: carvacrol (80.6%); p-
cymene (4.8%); myrcene (1.5%); γ -terpinene

(2.1%); terpinene-4-ol (2.1%).

[97]

Iran carvacrol (87.16%)
p-cymene (6.39%) [98]

Central Iran
carvacrol (69.62%)
γ-terpinene (9.25%)
p-cymene (8.36%)

[99]
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Satureja
montana Lamiaceae

Khoramabad,
Iran

carvacrol (83.4%)
γ-terpinene (9.62%)

thymol methyl ether (1.12%)
α-terpinene (1.70%)

[100]

France
carvacrol (53.35%)

γ-terpinene (13.54%)
p-cymene (13.03%)

[101]

Montenegro

Sample at 100 m: thymol (24.69%); linalool
(15.38%); carvacrol (15.19%)

Sample at 500 m: thymol (24.69%); carvacrol
(24.46%); linalool (17.94%)

Sample at 800 m: linalool (32.58%);
cis-sabinene hydrate (23.05%); nerolidol

(9.36%)

[102]

Celery
(Apium

graveolens)
Apiaceae

Marrakech

D-limonene (79.15%)
α-hydroxypropylbenzene (4.23%)

β-selinene (9.25%)
β-myrcene (1.93%)

[103]

India

p-cymene (16.73%)
γ–terpinene (13.78%)

β-selinene (8.05%)
thymol (6.93%)

α –terpinyl acetate (5.81%)
1,4-dimethyl-4-acetyl-1-cyclohexene

(5.59%)
kessane (3.64%)
β-pinene (3.08%)

[104]

Lublin

from whole leaves of leaf EO: limonene
(54.04–58.29%), myrcene (19.51–27.65%), 1,2

ethanediol, 1-phenyl
(5.62–7.17%), furan, 2-(2-propenyl)

(2.25–2.27%), Z-β-ocimene (1.45–1.85%)

[105]
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Cuminum
cyminum Umbelliferae

Tunisia

cuminlaldehyde (39.48%)
γ-terpinene (15.21%)
O-cymene (11.82%)
β-pinene (11.13%)

2-caren-10-al (7.93%)
trans-carveol (4.49%)

myrtenal (3.5%)

[106]

Iran, Egypt,
India, Europe

Iran, Egypt, India, Europe:
cuminic aldehyde (41.5%, 29.3%, 23.2%,

22.4%)
p-cymene (17.4%, 10.1%, 18.4%, 20.2%)
β-pinene (10.7%, 15.7%, 12.6%, 14.1%)

respectively.

[107]

India

cumaldehyde (32.50%)
α-pinene (9.68%)
sabinene (7.54%)
o-cymene (6.55%)
β-pinene (6.0%)

isopropyl benzaldehyde (4.91%)
3-carene (4.42%)

D-limonene (4.41%)
α–Terpinyl acetate (3.53%)

trans-nerolidol (3.02%)

[108]

Ocimum
basilicum Lamiaceae

Algeria
linalyl acetate (53.89%)

linalool (22.52%)
eucalyptol (3.29%)

[109]

Armenia

O. basilicum var. purpureum,
O. basilicum var. thyrsiflora,
O. basilicum x citriodorum:

methyl chavicol (57.3%, 20.00%, 9.45%)
trans-α-bergamotene (4.34%, 1.34%, 3.52%)

respectively

[110]

India
methyl cinnamate (70.1%)

linalool (17.52%)
tau-cadinol (2.59%)

[111]
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Thymus
capitatus Lamiaceae

Greece
carvacrol (81.8%)

linalool (3.5%)
(E)-caryophyllene (3.5%)

[112]

Tunisia

Vegetative Leaves and Flowering Leaves,
Flower buds, Flowers Leaves, Post-flowering

Leaves and Post-flowers:
Carvacrol (65.9%, 83.0%, 71.3%, 80.7%,

77.4%, 70.6%, 69.5%,
68.1%,72.9%,78.6%,65.6%, 78.0%, 61.6%,

63.0%, 70.7%, 68.5%)
p-Cymene (16.7%, 5.5%, 8.1%, 5.4%, 7.3%,
8.0%, 8.9%, 8.2%, 5.9%, 5.3%, 8.6%, 4.8%,

13.7%, 15.4%, 9.1%, 10.8%) respectively

[113]

Libya

Sidi-Alhamry and Abu-Draa:
γ-terpinene (16.18%, 0.76%)
carvacrol (24.28%, 58.56%)

caryophyllene oxide (10.43%, 6.26%)

[114]

Despite their interesting therapeutic potential, the pharmaceutical use of EOs is
limited by their volatility, poor water solubility and instability in the presence of
heat,  light  and oxygen.  Therefore,  the development of  strategies to optimize or
even enhance the stability and effectiveness of EOs is a current challenge, in order
to fully exploit their biological potential. In this context, nanotechnology proved
to  be  a  very  promising  strategy  to  protect  EO  integrity  from  high  volatility,
limited stability and poor solubility, which can reduce their efficacy and hamper
their  applications.  It  has  become  progressively  more  evident  that  formulations
containing natural and/or synthetic lipids represent a promising tool for enhancing
the  chemical  stability  and  water  solubility  of  poorly  water-soluble  and  highly
lipophilic compounds. A wide range of different nano-sized delivery systems has
been proposed for the encapsulation of EOs. Recently, considering the lipophilic
nature  of  EOs,  lipid-based  formulations,  distinguished  into  vesicular  and  non-
vesicular systems, have been considered for effective encapsulation and delivery
of  EOs.  In  specific,  liposomes,  solid  lipid  nanoparticles  (SLN),  nanostructured
lipid carriers (NLC), and nano- and microemulsions encapsulating EOs have been
developed and investigated for this purpose [7, 118 - 120]. A schematic showing
the  structure  of  the  different  lipid-based  formulations  used  for  the  EOs
encapsulation  is  reported  in  Fig.  (1).
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Fig.  (1).   Schematic  showing  the  structure  of  the  different  lipid-based  formulations  used  for  the  EOs
encapsulation.

In  recent  years,  the  possible  improvement  of  the  antimicrobial  activities  of
formulated EOs was investigated against different pathogens [121 - 123]. When
encapsulated  in  lipid  based  nanosystems,  EOs  usually  show  improved
antimicrobial activity, probably due to the ability of lipid and/or phospholipids to
interact and easily fuse with the membrane of infectious microorganisms [124],
with consequently improved delivery of the active components to the microbial
cell.  Indeed,  the  antimicrobial  activity  of  EOs  depends  on  the  ability  of  their
active components to disrupt cell walls and cytoplasmic membranes, leading to
lysis and leakage of intracellular compounds [125]. Therefore, these carriers have
been  proposed  as  therapeutic  options  for  the  treatment  of  infections  across  the
human  body  or  as  innovative  and  promising  strategies  to  reduce  the  spread  of
multidrug-resistant  pathogens  and  to  eradicate  or  avoid  the  development  of
microbial biofilms [126]. Hence, the following paragraphs will focus on the use of
these  nanotechnologies  to  develop  EO-based  formulations  with  enhanced
antimicrobial  properties  and  better  effectiveness  for  application  in  the
pharmaceutical  field.
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Liposomes

This paragraph details specifically on encapsulation of EOs into phospholipidic
vesicles, also known as liposomes, and reports the methods that are usually used
to prepare liposomes incorporating EOs, their characterization in terms of size and
encapsulation efficiency, as well as the improvement of their activity, focusing on
the antimicrobial properties for pharmaceutical applications.

Liposomes  are  viewed  as  attractive  delivery  vehicles  by  the  pharmaceutical
industry.  They  are  nanometric  self-closed  structures  of  spherical  shape  with  a
diameter  ranging  from  20  nm  to  a  few  thousand  nm,  capable  of  entrapping
hydrophilic  and  hydrophobic  drugs  in  their  aqueous  core  and  lipid  bilayer,
respectively.  Liposomes  can  be  formed  from  phospholipids  that,  in  water,  are
arranged  spontaneously  in  double  concentric  layers  of  ~4  nm  of  thickness,
separated by aqueous compartments. Depending on the number of lipid bilayers,
which  composes  the  vesicles,  and  on  the  base  of  their  size,  liposomes  can  be
classified  into  one  of  two  categories:  multilamellar  (MLV)  and  unilamellar
vesicles  (ULV).  MLVs  have  an  onion  structure  characterized  by  five  or  more
concentric  layers,  with  a  final  diameter  in  the  range  from  0.4  to  3.5  μm.
Unilamellar liposomes, instead, have a single phospholipid bilayer enclosing the
aqueous solution. Among ULVs, it is also possible to distinguish some kinds of
vesicles for their diameter: small unilamellar vesicles (SUV), with a diameter in
the range from 25 to 100 nm, and large unilamellar vesicles (LUV), from 0.1 to 1
μm. The membrane composition and arrangement determine their versatility and
ability to carry both hydrophilic and hydrophobic drugs in the aqueous core and
lipid  bilayer,  respectively,  as  well  as  the  possibility  of  protecting  the  vesicular
cargo.  Liposome  properties  differ  considerably  with  lipid  composition,  surface
charge, size, and method of preparation. The method used to produce liposomes
should achieve a high entrapment efficiency, narrow size distribution and long-
term stability. The thin-film hydration method is one of the most widely used for
the formulation of liposomes [127], and for this reason, it has been used in many
articles cited in this chapter as a reference method. The vesicle size is an acute
parameter  determining the  circulation half-life  of  liposomes,  whereas  both size
and number of bilayers affect the amount of EO that can be encapsulated in these
delivery  vehicles.  Furthermore,  the  choice  of  the  liposome  components
determines the ‘rigidity’ or ‘fluidity’, as well as the surface charge of the bilayer.
For instance, unsaturated phosphatidylcholine species from natural sources (egg
or  soybean  phosphatidylcholine)  give  much  more  permeable  and  less  stable
bilayers,  whereas  saturated  phospholipids  with  long  acyl  chains  (for  example,
dipalmitoylphosphatidylcholine)  form  a  rigid  and  rather  impermeable  bilayer
structure.  EOs  may  affect  liposome  characteristics  such  as  size,  encapsulation
efficiency and thermal behavior of lipid bilayers. In particular, several EOs can
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decrease  the  size  of  liposomes,  increase  the  membrane  fluidity  and  reduce  the
oxidation  of  the  lipid  bilayer.  It  is  reported  that  EOs  cause  a  higher  cohesion
packing among the apolar chains of phospholipids in the vesicle membrane [128]
or increase their surface curvature. This effect could be explained considering that
some EOs components, such as monoterpenes, can be located at the polar head
group  region  of  the  membrane,  and  they  could  increase  in  various  ways  the
polarity  of  the  membrane  environment,  forcing  the  curvature  of  the  vesicles.
Many  authors  also  showed  that  the  thermal-oxidative  stability  of  EO-loaded
liposomes  is  higher  than  plain  liposomes.  These  authors  demonstrated  that  the
presence of EO elevates the temperature at which oxidation of liposomes occurs
[129]. When EOs are entrapped within the lipid molecules of the vesicle bilayer,
they have the ability to increase the membrane fluidity of liposomes since they
decrease  the  phase  transition temperature  (Tm)  of  vesicles  (or  only  broaden the
peak) and/or modify the enthalpy of the gel-to liquid crystalline transition. EOs
can  also  cause  the  disappearance  of  the  pre-transition  peak  characteristic  of
phospholipid  vesicles,  which  indicates  their  ability  to  interact  with  the  lipid
bilayer  surface  and  disturb  the  acyl  chain  organization  within  the  double-layer
[130].

The ability of the EOs components to interact and modify membrane properties
and organization of phospholipids of liposome double-layer gives an explanation
of  their  antifungal,  antibacterial,  anesthesia-potentiating,  neuro-protective,
antioxidant, and antiparasitic effects. Indeed, the antimicrobial efficacy of EOs is
a consequence of their interaction with the membrane of the microorganism. It has
been shown that the bioactive components of EOs might attach to the surface of
the microbial cell and thereafter penetrate through the phospholipid bilayer of the
cell membrane [131]. Their accumulation greatly affects the structural integrity of
the microbial membrane, influencing the ion transport processes and causing cell
death  due  to  the  leakage  of  critical  molecules  and  ions.  The  extent  of  the
membrane  damage  is  related  to  the  physicochemical  characteristics  (such  as
lipophilicity and water solubility) of the EOs components. In addition, this effect
seems to be dependent on the lipidic composition and net surface charge of the
microbial  membrane  [132].  Liposome-based  vesicular  nanosystems  are
considered a promising strategy to increase the antimicrobial activity of EOs, as
they enable improved delivery of antimicrobials to bacterial cells, thus increasing
the efficacy of the therapeutic treatments. Liposomes have the ability to interact
with  several  cell  types,  and  this  capacity  is  involved  in  their  antimicrobial
efficacy. Indeed, liposomal phospholipid bilayer easily fuses with bacterial cell
membranes  and  releases  high  doses  of  EOs,  directly  inside  microbial  cells.
Furthermore,  liposome  composition  can  be  changed  to  promote  the  adsorption
onto, or fusion with the microbial cell membrane, as well vesicle surface can be
changed  based  on  the  characteristics  of  the  infectious  agent.  Arguably,  EOs
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protection in liposomal nanocarriers, their fusogenicity and versatility properties
constitute the biggest advantages of using liposomal carriers to deliver EOs over
non-encapsulated EOs [133].

Taken  together,  the  principal  investigations  published  between  2015  and  2020
demonstrate the great potential of liposomal vesicles as carriers for EOs delivery,
and  stress  the  potentiality  of  these  lipid-based  vehicles  for  the  treatment  of
bacterial  infections  and  biofilm  targeting.  The  most  common  and  simplest
preparation  technique  used  to  prepare  EOs-liposome  based  formulations  is  the
thin-film hydration method. The preparation of liposomes by hydration of a lipid
film involves the evaporation of the organic solvent under low pressure conditions
from a lipid solution, which results in a thin phospholipid film stuck at the bottom
of  a  flask.  The  hydration  of  the  lipid  film  by  an  aqueous  buffer  aided  by
mechanical energy, such as vortication, results in the spontaneous formation of
multilamellar  vesicles (MLVs).  The method is  simple,  but  this  procedure gives
heterogeneous  vesicles  of  large  size  and thus  requires  additional  steps,  such as
sonication or extrusion, in order to reduce the size and improve the homogeneity
of the vesicle sample. Sonication transforms the MLVs population into SUVs by
using ultrasound that provides enough energy to break MLVs. In addition, LUVs
may  be  the  desired  product  of  extrusion,  which  can  be  obtained  whereby  the
MLVs are forced through polycarbonate filters with defined pore sizes. The lipid
bilayers of the vesicles can be disrupted, and if the applied force is strong enough,
the MLV is completely torn apart,  creating smaller fragments that aggregate as
SUV or LUV at the other side of the membrane, with a diameter reflecting the
pore  size  of  the  membranes.  Table  2  reports  the  methods  used  to  prepare  EO-
loaded liposomes (multilamellar or unilamellar).

Table 2. Preparation techniques of liposome formulations encapsulating EOs.

Essential Oil Vesicle Composition and Lamellarity Preparation Technique Refs.

Citrus limon var. pompia
Citral

Lipoid S75 (soybean phospholipids with
70% phosphatidylcholine) unilamellar

vesicles

Thin-film hydration method
combined with sonication [51]

Citrus limon var. pompia
Citral

Lipoid S75 (soybean phospholipids with
70% phosphatidylcholine) unilamellar

vesicles

Thin-film hydration method
combined with sonication [134]

Thymus capitatus
Citrus limon var. pompia

Citral

Soybean lecithin liposomes, glycerosomes
unilamellar vesicles

Thin-film hydration method
combined with sonication [135]

Thyme (Thymus
capitatus)

Soybean lecithin liposomes, glycerosomes
unilamellar vesicle

Thin-film hydration method
combined with sonication [136]
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Essential Oil Vesicle Composition and Lamellarity Preparation Technique Refs.

Artemisia annua
Soybean lecithin, cholesterol, β-
cyclodextrin solid multilamellar

liposomes (SLP)

Thin-film hydration method
combined with
ultrasonication

[137]

Salvia (Salvia triloba)
Rosemary (Rosmarinus

officinalis)

P90G (non-hydrogenated soy
phosphatidylcholine) and cholesterol

multilmellar vesicles
Thin-film hydration method [138]

Thyme (Thymus
capitatus)

P90G (non-hydrogenated soy
phosphatidylcholine) and cholesterol

multilamellar vesicles

Thin-film hydration method
combined with
ultrasonication

[139]

Tea tree oil (Melaleuca
alternifolia)

Phosphatidylcholine, cholesterol and
tween 80

unilamellar vesicles

Thin-film hydration method
combined with sonication [140]

Trachyspermum
copticum

SPC80 (soybean phospholipid containing
75% phosphatidylcholine) and cholesterol

multilamellar liposomes
Thin-film hydration method [141]

Cymbopogon densiflorus Phosphatidylcholine and cholesterol
unilamellar vesicles

Thin-film hydration method
combined with
ultrasonication

[142]

Cinnamon Soy lecithin and cholesterol multilamellar
vesicles Thin-film hydration method [144]

Estragole, eucalyptol,
isoeugenol, pulegone,
terpineol and thymol

Lipoid S100 (non-hydrogenated soybean)
HP-ß-cyclodextrin

multilamellar vesicles
Ethanol injection method [145]

Generally, EOs have the ability to decrease the sizes of plain liposomes produced
with the same method. This effect was explained by the capability of EOs to cause
higher  side-chain  packing  among  the  apolar  chains  of  phospholipids  in  the
membrane  vesicles  [120].  The  encapsulation  efficiency  differs  from  an  EO  to
another for liposomes prepared by the same method.

As antimicrobial agents, liposomes were tested against a large number of Gram-
negative  and  Gram-positive  bacteria  and  fungi,  showing  generally  improved
activity  in  comparison  to  free  EOs,  as  summarized  in  Table  3.

Table 3. Antimicrobial activity of liposome formulations encapsulating EOs.

Application Essential Oil Delivery Vehicle Microorganisms
In Vitro/In

Vivo
Evaluation

Refs.

Skin and
mucosal

infections

Citrus limon var.
pompia
Citral

liposomes
Escherichia coli
Pseudomonas

aeruginosa
in vitro [51]

(Table 2) cont.....
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Application Essential Oil Delivery Vehicle Microorganisms
In Vitro/In

Vivo
Evaluation

Refs.

Staphylococcus aureus
Candida albicans

Oropharyngeal
infections

Citrus limon var.
pompia
Citral

liposomes Streptococcus mutans in vitro [134]

Antimicrobial in
caries prevention

Thymus capitatus
Citrus limon var.

pompia
Citral

liposomes
glycerosomes

penetration enhancer-
containing vesicles

(PEVs)

Streptococcus mutans
Candida albicans in vitro [135]

Oral infections Thyme (Thymus
capitatus)

liposomes
glycerosomes

penetration enhancer-
containing vesicles

(PEVs)

Streptococcus mutans
Lactobacillus
acidophilus

Streptococcus
sanguinis

in vitro [136]

Antifungal
agents

Artemisia annua liposomes
Candida norvegensis

Candida krusei
Candida tropicalis

in vitro [138]

Salvia (Salvia
triloba)

Rosemary
(Rosmarinus
officinalis)

liposomes

Escherichia coli
Proteus mirabilis

Klebsiella
pneumoniaee

Staphylococcus aureus

in vitro [139]

Antimicrobial
agents

Thyme (Thymus
capitatus) solid liposomes not evaluated ------- [137]

Tea tree oil
(Melaleuca
alternifolia)

liposomes
Staphylococcus aureus

Eschericia coli
Candida albicans

in vitro [140]

Trachyspermum
copticum liposomes Escherichia coli

Staphylococcus aureus in vitro [141]

Cymbopogon
densiflorus liposomes

Escherichia coli
Staphylococcus aureus

Bacillus subtilis
in vitro [142]

Antibitiotic
resistant

bacteria and
biofilms

Cinnamon liposomes
methicillin-resistant

Staphylococcus aureus
(MRSA)

in vitro [144]

Preservatives

Estragole,
eucalyptol,
isoeugenol,

pulegone, terpineol
and thymol

liposomes not evaluated ------ [145]

(Table 3) cont.....
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In view of the increasing interest in natural antimicrobial molecules, Usach and
Manca’s research group, in a recent investigation, screened the ability of Citrus
limon  var.  pompia  (CLP)  extract  incorporated  in  vesicular  nanocarriers  against
different bacterial strains and yeasts and the results were compared with those of
vesicles loaded with citral, which is one of the most abundant terpenes of Citrus
EOs [51]. CLP-EO and citral were taken from Sardinia’s biodiversity. The authors
prepared  liposomes  containing  CLP-EO  or  raw  citral  by  sonication  using  soy
phosphatidylcholine and focused on the evaluation of their antibacterial activity.
The  vesicles  were  small  in  size  (~140  nm),  with  a  polydispersity  index  (PdI)
~0.31,  highly  negatively  charged  (~  -73  mV),  and  able  to  incorporate  high
amounts of EO or citral (entrapment efficiency, EE% ~86%). CLP-EO and citral
exhibited antimicrobial activity against all of the assayed microorganisms, with P.
aeruginosa being the least sensitive. Citral was slightly more effective than CLP-
EO  in  counteracting  the  growth  of  E.  coli,  S.  aureus,  and  C.  albicans.  The
incorporation  of  citral  in  vesicles  improved  its  antifungal  activity  against  C.
albicans.  The  overall  results  suggest  that  CLP-EO  and  citral  can  be  suitably
loaded  in  liposomes,  which  are  able  to  facilitate  their  dermal  delivery  and
interaction with epidermal cells. Afterward the efficacy of the bioactive molecules
was increased. Furthermore, encapsulation of EOs within the bilayer of liposomes
is advantageous because it reduces the skin-sensitizing properties of some aged
EOs, avoiding hypersensitivity reactions and allergic contact dermatitis. Later on,
Manca and co-authors [134] proposed a new comparative study that underlined
how the incorporation of CLP-EO or citral in phospholipid vesicles enhances the
efficacy  of  the  payloads,  improving  the  protection  against  oxidative  stress  and
accelerates the healing process of wounded mucosa. Liposomes loading 50 mg/ml
of citral appeared as the most promising dispersion, since they were also able to
inhibit  the  proliferation of  S.  mutans.  Thus,  this  formulation may represent  the
starting point to formulate an effective, safe and pleasant mouthwash to control
oral  hygiene and health.  Pinna and co-authors [135] screened the antimicrobial
ability  of  Thymus  capitatus  (TC)  EO  and  CLP  extract  as  raw  extracts  or
incorporated  in  vesicular  nanocarriers  against  S.  mutans  and  C.  albicans  and
proposed  these  formulations  for  the  antimicrobial  treatment  of  oral  cavity
diseases.  TC  and  CLP  extracts  were  incorporated  in  different  types  of
phospholipid  vesicles,  namely  liposomes,  glycerosomes,  and  Penetration
Enhancer-containing  Vesicles  (PEVs)  aiming  at  protecting  the  bioactive
components from possible degradation and controlling their release. TC and CLP-
loaded liposomes were ~86 and 137 nm, respectively.  The addition of  glycerol
(glycerosomes) or propylene glycol (PG-PEVs) led to an increase in vesicle size,
which  was  more  significant  for  TC  essential  oil.  Regardless  of  the  vesicle
composition, the polydispersity index, which is a dimensionless measure of the
broadness  of  the  size  distribution,  was  always  ≤0.3,  thus  indicating  a
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homogeneous  distribution  of  the  vesicle  size  of  all  the  dispersions.  The  zeta
potential of the vesicles was generally highly negative, predicting good physical
stability of the vesicle dispersions during storage. On the base of the data obtained
in this study, TC essential oil possesses the highest antimicrobial capacity against
S. mutans and C. albicans. CLP extract showed bactericidal properties against S.
mutans, but it was not effective as a fungicidal compound. All the phospholipid
vesicles  behaved  similarly,  suggesting  that  the  transported  extract  was  not  the
only factor to be considered in the outcomes, but also their components had an
important role. Therefore, TC and CLP incorporated in nanocarriers, in particular
glycerosomes and PG-PEVs, which behaved similarly against both the bacterial
and yeast strains tested, could be promising and safe oral antimicrobial agents in
caries  prevention.  Manconi  and  co-authors  [136]  also  formulated  Thymus
capitatus  EO  (mainly  composed  of  carvacrol)  in  liposomes,  glycerosomes  and
PEVs and proposed these formulations as antibacterial-antioxidant mouthwashes.
The  oil  was  mixed  with  lecithin  and  water  to  produce  liposomes,  or  different
ratios of water/glycerol and water/propylene glycol (PG) to produce glycerosomes
and  PG-PEVs,  respectively.  Formulations  appeared  as  highly  biocompatible
unilamellar  spherical  vesicles  capable  of  counteracting  oxidative  stress  and
promoting  wound  repair  in  keratinocytes,  thanks  to  enhanced  uptake  of  the
delivered compounds. These authors showed that the oil had high antimicrobial
capacity  against  cariogenic  S.  mutans,  L.  acidophilus,  and  commensal  S.
sanguinis, and they referred that the combination of antioxidant and antibacterial
activities of thyme EO formulations may be useful for the treatment of oral cavity
diseases. PG-PEVs, in particular, showed good stability on storage and optimal
antioxidant and inhibitory effect against the most important cariogenic bacteria.

Thyme  EO  was  formulated  also  in  solid  liposomes  (SLPs),  which  are  newly
researched  nanocarrier  systems  characterized  by  an  excellent  biocompatibility,
bioavailability  and  drug  adaptability.  Compared  with  conventional  aqueous
liposomes,  SLPs  have  higher  stability  and  longer  storage  time.  Hence,  the
volatility and instability of EO can be reduced by SLPs encapsulation. SLPs can
be obtained via freeze-drying, but this process may result in vesicle destruction
because of the ice crystals formation or their subsequent sublimation. Therefore,
Lin  and  co-authors  [137]  explored  the  possibility  of  using  β-cyclodextrin  as  a
cryoprotectant  to  protect  the  liposomal  membrane  during  the  freeze-drying
process.

The effect of liposomal inclusion on the in vitro antifunginal activity of Artemisia
annua  EO  (AEO)  was  investigated  by  Bilia  and  co-authors  [138],  in  order  to
study  the  influence  of  the  vesicles  composition  on  the  antifunginal  activity  of
unilamellar liposomes incorporating the EO. These authors used different ratios of
non-hydrogenated  soy  phosphatidylcholine  (P90G)  and  cholesterol  (CHOL)
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(16.5:5,  33:10  and  66:20  mg/ml  of  vesicular  dispersion),  loaded  with  different
amounts  of  AEO  (5,  10,  20,  50  mg/ml  of  vesicular  dispersion).  EO  did  not
influence  the  size  of  liposomes,  causing  great  cohesion  packing  in  the  apolar
chains  of  the  vesicle  bilayers,  probably  due  to  the  small  and  lipophilic
components of the AEO. Size distribution of AEO-loaded liposomes was affected
by the phospholipid concentration, the EO/lipid ratio and cholesterol content. The
encapsulation efficiency improved by increasing the lipid (both P90G and CHOL)
concentration, but it slightly decreased when 20 mg/ml AEO was added. Instead,
the  addition  of  50  mg/ml  AEO  prevented  the  supramolecular  organization  of
lipids, and the bilayer system was not formed. Microbiological studies suggested
that the vesicular systems did not alter the antibacterial activity of pure AEO or
even improve it. Indeed, they resulted active against C. krusei and C. tropicalis,
which are among the most resistant yeast strains against widely used antifungal
agents.

Salvia  tribola  (S)  and  Rosmarinus  officinalis  (R)  EOs  have  been  loaded  in
phospholipid  vesicles  obtaining  spherical  and  stable  liposomes  [139].  In
particular,  R  and  S-loaded  liposomes  were  prepared  using  the  film  hydration
method  employing  different  amounts  of  non-hydrogenated  soy
phosphatidylcholine  (P90G)  and  cholesterol.  The  optimized  preparations
exhibited average sizes of about 200 nm (polydispersity index - PdI - was about
0.25)  with  a  zeta  potential  in  the  range  from  −20  mV  to  −35  mV  and  good
stability on storage. The EE% was around 57% for S. triloba and around 65% for
R. officinalis. In addition to these encouraging physical and chemical properties,
Risaliti and co-authors [139] reported that the size of R and S-loaded liposomes
decreased  with  respect  to  the  plain  liposomes.  This  contraction  was  associated
with  a  significant  contribution  of  the  terpenes  present  in  the  EOs  to  the
stabilization  of  the  nanocarriers  as  a  consequence  of  the  higher  cohesion  and
packing among the apolar chains of the vesicle membranes. Moreover, formulated
EOs exhibited antimicrobial activity, especially against K. pneumoniae, which is a
pathogen  responsible  for  more  than  70%  of  infections  in  humans.  The
antibacterial  activity  was  comparable  to  that  of  neomycin.  Furthermore,  the
diameter of inhibition produced in the well diffusion assay by both formulations
was  larger  than  that  observed  for  the  free  EOs.  The  proposed  R  and  S-loaded
liposomes  could  represent  innovative  carriers  preserving  and  enhancing  the
biological  properties  of  S.  triloba  and  R.  officinalis  EOs.

The investigation of Yan and Mingqiao [140] promotes the use of formulated EOs
as alternative antimicrobials to synthetic chemical substances. Tea tree oil (TTO)
was encapsulated into phosphatidylcholine liposomes prepared to employ a thin-
film hydration methodology and characterised by dynamic light scattering for size
distribution  (mean  hydrodynamic  diameter  75  nm)  and  transmission  electron
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microscope for morphology (spherical vesicles). Liposomes not only effectively
encapsulated  TTO  forming  a  stable  suspension  (EE%  96.08),  but  the
encapsulation was found to  improve the bactericidal  effect  of  the EO on TTO-
tolerant  strains.  Formulated  TTO  exhibited  excellent  broad-spectrum
antimicrobial  activity,  superior  to  free  TTO.

The  effect  of  liposomal  inclusion  on  the  in  vitro  antibacterial  activity  of
Trachyspermum  copticum  EO  was  investigated  by  Tabatabai  and  co-authors
[141].  Vesicles  were obtained by the thin-film hydration method from soybean
phospholipid  containing  75%  phosphatidylcholine  (SPC80)  and  cholesterol.
These liposomal  carriers  were examined for  their  antimicrobial  activity  against
Gram-negative  and  Gram-positive  bacteria  by  MIC  (minimum  inhibitory
concentration) assay. Results showed that Trachyspermum copticum  EO can be
incorporated in a sufficient amount in the prepared liposomes (EE% 60.78), which
successfully  demonstrated  their  antimicrobial  activity  and  their  potential
suitability  for  skin  disinfection  applications  or  in  wound  dressing.

Seibert  and  co-authors  [142]  developed  liposomal  vesicles  containing
phosphatidylcholine,  cholesterol  and  Cymbopogon  densiflorus  leaf  EO  and
evaluated their antimicrobial activity. The EO from C. densiflorus  is composed
mainly of monoterpenoids, lipophilic substances that, it is believed, can interact
with  the  phospholipidic  bilayer  of  the  microbial  cell  membrane,  altering  its
integrity and function. The authors showed, for the first time, the antimicrobial
potential of nanostructured systems loaded with C. densiflorus EO, encouraging
its use in the treatment of microbial infections. In particular, liposomal oil mainly
composed  of  trans-p-mentha-2,8-dien-1-ol,  cis-p-mentha-2,8-dien-1-ol,  trans--
-mentha-1,8-dien-2-ol,  cis-piperitol,  and  cis-p-mentha-1,8-dien-2-ol  showed
improved  ability  to  inhibit  microbial  growth  compared  to  the  free  EO.  The
liposomes  were  even  able  to  reduce  oil  cytotoxicity.

Natural compounds in lipid-based nanosystems, have also been investigated as an
innovative  and  promising  strategy  for  overcoming  biofilm-related  antibiotic
resistance. It is urgent to discover new antimicrobial agents that can effectively
prevent  biofilm  formation  and  avoid  its  development.  It  has  been  well
demonstrated  that  natural  products  from  plants  have  antimicrobial  and  chemo-
preventive  properties  in  the  modulation  of  biofilm  formation.  For  this  reason,
encapsulation of EOs in lipid-based nanosystems has been recently highlighted as
a promising alternative to conventional antibacterial drugs to face the diffusion of
drug-resistant microorganisms [143, 144].

Cui  and  co-authors  [144]  designed  liposomes  to  encapsulate  cinnamon EO.  Its
antibacterial properties are attributed to terpenes, which can destroy the microbial



120   Medicinal Chemistry Lessons From Nature, Vol. 2 Paolicelli et al.

membrane  due  to  their  lipophilic  characteristics.  Nevertheless,  the  chemical
instability  of  cinnamon  oil  hinders  its  application  for  health  purposes,  thus,
cinnamon oil was encapsulated into liposomes to reduce its chemical instability
and  improve  its  antimicrobial  activity.  Specifically,  the  effects  of  different
concentrations  of  cinnamon  oil  on  the  viability  of  the  methicillin-resistant  S.
aureus  (MRSA)  biofilm  were  evaluated  after  a  24  h  treatment  with  free  or
encapsulated EO. Free cinnamon oil reduced the amount of MRSA viable cells by
1.49 logs, while the treatment with liposome containing cinnamon oil reduced this
number by 2.45 logs. Microscopic analysis showed reduced thickness and size of
MRSA  biofilms  after  treatment  with  the  liposomal  formulation.  Thus,  the
improved chemical stability of cinnamon oil  after encapsulation into liposomes
led to an enhancement of its antibiofilm activity.

Since  EOs  in  cyclodextrins  (CDs)  could  potentially  hinder  the  interaction  of
phenolic hydroxyl groups of some EO components with the acyl chains of a lipid
bilayer, EO-cyclodextrin complexes were included in liposomes and proposed by
Hammoud  and  co-authors  [145]  for  preserving  essential  oil  monoterpenes
(eucalyptol, pulegone, terpineol, and thymol) and phenylpropenes (estragole and
isoeugenol)  and  extent  their  shelf-life  and  activity.  CDs  are  cyclic
oligosaccharides,  consisting  of  (α-1,4)-linked  α-D-glucopyranose  units  with  a
hydrophilic  outer  surface  (outer  protons  H1,  H2,  H4,  and  H6)  and  a  lipophilic
inner  cavity  (with  the  inner  protons  H3  and  H5)  able  to  form  water-soluble
inclusion  complexes  with  a  variety  of  lipophilic  poorly  soluble  molecules,
including EOs. In order to ameliorate the formulation and prepare efficient and
stable drug-in-cyclodextrin-in-liposome (DCLs) carriers, the authors investigate
the  intimate  interactions  of  EO/Hydroxypropyl-β-cyclodextrin  (HP-β-CD)
complexes  with  liposomes.  For  this  reason,  DCLs,  prepared  by  the  ethanol
injection  method,  were  characterized  for  particle  size,  morphology,  release
kinetics,  and  storage  stability.  Regarding  the  size,  the  selected  HP-β-CD/EO
component-inclusion  complexes  had  different  effects  on  the  liposome  mean
dimension.  In  particular,  the  entrapment  of  HP-β-CD/estragole,  HP--
-CD/eucalyptol,  and  HP-β-CD/terpineol  inclusion  complexes  into  the  aqueous
core of liposomes determined the formation of larger vesicles compared to blank
DCLs.  Opposite  results  were  obtained  with  HP-β-CD/isoeugenol,  HP--
-CD/pulegone, and HP-β-CD/thymol complexes. This finding could be explained
considering  that  the  aromatic  rings  of  isoeugenol  and  thymol  are  completely
incorporated within  the  hydrophobic  cavity  of  HP-β-CD, thereby hindering the
interaction  of  isoeugenol  and  thymol  with  the  acyl  chains  of  the  lipid  bilayer.
Hence, the effects of isoeugenol and thymol on liposome membrane and particle
size  are  reduced.  Furthermore,  HP-β-CD  could  increase  the  drug-to-lipid  mass
ratio compared with the conventional incorporation of EO into the lipid phase of
liposomes. The high complexation efficiency of EO components into HP-β-CD
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obtained by these authors may allow predicting the ability of lipoid S100-DCL to
encapsulate  a  phenylpropene or  a  monoterpene antimicrobial  compound,  hence
the developed DCL formulations  could be proposed as  suitable  pharmaceutical
products able to improve the EO antimicrobial activity.

SOLID  LIPID  NANOPARTICLES  AND  NANOSTRUCTURED  LIPID
CARRIERS

Solid lipid nanoparticles (SLN) are nano-size particles prepared with lipids that
remain  solid  at  room  and/or  human  body  temperature.  The  selection  of
components,  production  techniques  and  possible  applications  were  widely
reviewed [146]. The use of solid lipids instead of liquid oils is a very attractive
idea  to  achieve  controlled  drug  release  because  drug  mobility  in  a  solid  lipid
matrix should be considerably lower compared with a liquid one. Several other
advantages compete with the solid structure of these carriers, such as an increase
in drug stability and high drug payload. Furthermore, large-scale production and
eventual sterilization can be implemented easily. The main disadvantage of SLNs
is  due  to  the  possibility  that,  during  the  storage,  at  least  a  part  of  the  particles
crystallizes in higher energy and more ordered structure. Due to its high degree of
order, the number of imperfections in the crystal lattice is reduced, leading to drug
expulsion.  The  second  generation  of  nanoparticles,  called  nanostructured  lipid
carriers  (NLC),  was  developed  in  order  to  overcome  some  of  the  potential
limitations associated with SLNs. By creating a less ordered solid lipid matrix,
i.e.,  by  blending  a  solid  lipid  with  a  liquid  one,  a  higher  active  loading  of  the
particles can be achieved. In general, the drug can be located in between the fatty
acid chains or in between the lipid layers and also in imperfections of the lipid
matrix  (e.g.,  amorphous  drug  clusters).  Therefore,  the  use  of  NLC  yields  an
increase in the loading capacity of the active compound in the particles and also
avoids  or  minimizes  its  expulsion  during  storage  [147].  EOs,  mixtures  of
lipophilic and generally volatile compounds, are ideal candidates to be conveyed
in SLNs and NLCs or to be used as liquid components of the same nanoparticles
[123]. Table 4 reports the references of some recent and interesting studies about
different  EOs  loaded  into  these  lipid  nano-systems,  potentially  suitable  for
pharmaceutical  application.

Table 4. Antimicrobial activity of solid lipid nanoparticles (SLN) or nanstructured lipid carriers (NLC)
formulations encapsulating EOs.

Application Essential Oil Delivery
Vehicle Microorganisms

In Vitro/In
Vivo

Evaluation
Refs.

Not specified Black cumin (Nigella
sativa) SLN not evaluated --- [149]
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Application Essential Oil Delivery
Vehicle Microorganisms

In Vitro/In
Vivo

Evaluation
Refs.

Antimicrobial
agent

Clove (Eugenia
caryophyllata) SLN

Salmonella typhi
Pseudomonas aeruginosa

Staphylococcus aureus
Candida albicans

in vitro [148]

Turmeric (Curcuma
longa) NLC

Escherichia coli
Staphylococcus aureus

Bacillus cereus
Pseudomonas aeruginosa

Streptococcus mutans
Acinetobacter junii
Candida albicans

in vitro [151]

Topical delivery Parsley (Ridolfia
segetum) NLC not evaluated --- [150]

Anti acne
Java citronella
(Cymbopogon

winterianus Jowitt)
SLN Propionibacterium acnes in vitro [152]

Wound healing

Mentha (Mentha
pulegium) NLC

Streptococcus pneumoniaee
Staphylococcus epidermidis

Staphylococcus aureus
Listeria monocytogenes

Escherichia coli
Pseudomonas aeruginosa

Bacillus anthracis
Salmonella typhimurium

in vitro
in vivo [153]

Rosemary (Rosmarinus
officinalis) NLC Staphylococcus aureus

Pseudomonas aeruginosa in vitro [154]

Eucalyptus (Eucalyptus
globulus)

Rosemary (Rosmarinus
officinalis)

NLC Staphylococcus aureus
Streptococcus pyogenes

in vitro
in vivo [155]

Peppermint (Mentha
piperita) NLC

Escherichia coli
Salmonella typhimurium
Pseudomonas aeruginosa

Staphylococcus aureus
Staphylococcus epidermidis

Bacillus anthracis
Staphylococcus

pneumoniae
Listeria monocytogenes

in vitro
in vivo [156]

Lavandula + ferulic
acid NLC not evaluated --- [157]

(Table 4) cont.....
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Application Essential Oil Delivery
Vehicle Microorganisms

In Vitro/In
Vivo

Evaluation
Refs.

Antifungal agent

Clotrimazol +
Rosemary (Rosmarinus

officinalis)
Lavender (Lavandula x

intermedia Sumian)
Oregano (Origanum

vulgare)

NLC
Candida albicans
Candida krusei

Candida parapsilosis
in vitro [158]

Microbial resistance to antibiotics is a major problem in the treatment of diseases,
so  overcoming  antimicrobial  resistance  is  an  urgent  clinical  need.  Natural
products  formulated  in  nanoparticles  are  promising  approaches  to  reduce
microbial  resistance.  The  antimicrobial  activity  of  solid  lipid  nanoparticles
(SLNs)  containing  Eugenia  caryophyllata  EO  against  human  pathogens  was
evaluated  [148].  A  series  of  formulations  was  tested  for  their  antimicrobial
activity  against  S.  typhi,  P.  aeruginosa,  S.  aureus  and  C.  albicans.  The  results
indicate that the antimicrobial activity of the EO was remarkably enhanced when
it  was  encapsulated  into  SLNs.  Nigella  sativa  oil  was  shown  to  possess
antioxidant, anti-inflammatory, anticancer, analgesic and antimicrobial activities.
The mixture of lipids used to encapsulate the oil, obtained by supercritical fluid
extraction  of  the  seeds,  yielded  SLNs  of  low  crystallinity  [149].  This  mixture,
which  does  not  form  a  crystalline  matrix,  is  able  to  overcome  the  problem  of
partial or total drug expulsion encountered with the use of high-purity lipids in the
formulation  of  SLNs.  Even  Ridolfia  segetum  essential  oil  (REO),  isolated  by
hydro-distillation from the Portuguese aromatic plant, was used with a dual key
function as an active compound and simultaneously as a structuring component of
the  nanoparticles  [150].  The  introduction  of  REO  in  the  lipid  nanoparticles
yielded  a  reduced  particle  size  and  homogeneous  formulation  suitable  for  skin
application, with a high entrapment efficiency as well as a good stability profile.
NLC was also employed to load turmeric extract (T-NLC) [151]. Turmeric is an
indigenous  herb  in  Southern  Asia,  and  it  is  well  recognized  for  its  therapeutic
properties. Curcuminoids contained in this herb extract, because of their lipophilic
structure,  show  poor  bioactivity  in  water  solution,  so  their  therapeutical  use  is
severely limited. T–NLC showed higher antibacterial activity against rod shape
Gram-negative  bacteria  than  free  turmeric  extract.  Java  citronella  oil
(Cymbopogon winterianus Jowitt) appears to have the potential for use in topical
anti-acne  preparations  due  to  its  activity  against  Propionibacterium  acnes.
Unlikely,  this  use  is  limited  by  easy  oxidation,  high  volatility  and  poor  water
solubility  of  the  oil.  Two  preparations  were  developed,  respectively  oleogel
containing citronella oil and oleogel containing SLNs loaded with citronella oil

(Table 4) cont.....



124   Medicinal Chemistry Lessons From Nature, Vol. 2 Paolicelli et al.

[152].  The SLN preparation process caused a change in the composition of the
citronella oil. Nevertheless, when the preparations were kept at 40°C for 120 days,
the oleogel containing citronella oil-loaded SLNs still remained active against P.
acnes, whereas the oleogel containing un-encapsulated citronella oil was inactive
by day 45. Moreover, the solid lipid matrix provided protection from the volatile
oil  components  and prolonged the  release  of  citronella  oil.  Gels  prepared  from
Mentha  pulegium  essential  oil  (MPO)  loaded  into  nanostructured  lipid  carriers
(MPO-NLCs)  might  hasten  the  infected  wound  healing  process  [153].  Wound
repair  is  a  crucial  process:  tissue  regeneration  enhancement  and  infection
prevention are key factors to minimize pain, discomfort, and scar formation. The
authors evaluated in vitro antibacterial activity of MPO-NLCs and in vivo wound
healing activity of MPO-NLCs in the BALB/c mice model. MPO-NLCs showed
high  antibacterial  activity  against  three  Gram-positive  bacteria  strains  (S.
epidermidis,  S.  aureus  and L.  monocytogenes)  and two Gram-negative  bacteria
strains (E. coli and P. aeruginosa) and evidenced potential use for the treatment of
infected wounds. The efficiency of topical rosemary essential oil (REO) loaded
into NLCs was also investigated in vitro and in vivo, evaluating their activity in
the healing process of infected wounds [154].  REO-NLCs showed antibacterial
activity  against  S.  epidermidis,  S.  aureus,  L.  monocytogenes,  E.  coli  and  P.
aeruginosa.  Moreover,  REO-NLCs  could  reduce  the  rate  of  tissue  bacterial
colonization  and  wound  size  while  they  increased  vascularization,  fibroblast
infiltration,  re-epithelialization  and  collagen  production.  Lipid  nanoparticles
loaded  with  rosemary  or  eucalyptus  EOs  were  able  to  enhance  healing  of  skin
wounds [155]. The antimicrobial activity of nanoparticles was tested against two
reference  microbial  strains:  S.  aureus  and  S.  pyogenes.  The  capability  of
nanoparticles  to  promote  wound  healing  in  vivo  was  evaluated  on  a  rat  burn
model.  NLCs  based  on  olive  oil  and  loaded  with  eucalyptus  oil  showed  good
wound  healing  properties  toward  fibroblasts,  associated  with  antimicrobial
properties.  Olive  oil  proved  to  exert  a  synergic  effect  with  eucalyptus  oil  with
respect to antimicrobial activity and wound repair promotion. The efficiency of
peppermint  essential  oil  (PEO)  loaded  into  nanostructured  lipid  carriers  (PEO-
NLCs) was tested in vitro and in vivo [156]. For in vitro studies, PEO and PEO-
NLCs  were  tested  for  antibacterial  activity  against  E.  coli,  S.  typhimurium,  P.
aeruginosa,  S.  aureus,  S.  epidermidis,  B.  anthracis,  S.  pneumoniaee,  and  L.
monocytogenes. Against all these bacterial strains, they showed similar efficacy.
Wound  contraction,  bacterial  count,  histological  examinations,  and  molecular
analyses  were  evaluated  in  infected  mice.  In  vivo  analysis  showed  that  wound
contraction  rate,  fibroblast  infiltration,  collagen  deposition,  and  re-
epithelialization were increased in PEO and PEO-NLCs-treated animals compared
to the control group.
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NLCs  were  also  employed  for  the  combined  delivery  of  ferulic  acid  and
Lavandula  EO  [157].  The  co-presence  of  ferulic  acid  and  Lavandula  EO,  as
compared  to  synthetic  isopropyl  myristate-based  NLC,  increased  nanoparticles
stability  due to  higher  ordering of  lipid chains,  as  confirmed by morphological
and physicochemical studies. The enhanced cytocompatibility was observed when
ferulic acid and Lavandula EO were combined in the same carrier, as confirmed
by in vitro studies on fibroblasts. Furthermore, the combined delivery of ferulic
acid  and  Lavandula  EO  significantly  promoted  cell  migration  with  higher
effectiveness with respect to the free drug solution and the plain carrier (without
the EO). The combined effect of the antioxidant ferulic acid and Lavandula EO,
co-delivered in lipid nanoparticles, is effective in promoting cell proliferation and
migration, and represents a promising strategy in the treatment of wounds. The
increasing  development  of  resistance  of  Candida  spp.  to  traditional  drugs
represents  a  great  challenge  to  the  medical  field  for  the  treatment  of  skin
infections.  EOs  were  recently  proposed  to  increase  the  effectiveness  of
pharmacological treatments. Mediterranean essential oil (Rosmarinus officinalis,
Lavandula  x  intermedia  Sumian,  Origanum  vulgare  subsp.  hirtum)  lipid
nanoparticles  were  used  for  clotrimazole  delivery,  exploring  the  potential
synergistic effect against Candida spp [158]. Results of the in vitro biosafety on
HaCaT  (normal  cell  line)  and  A431  (tumoral  cell  line),  allowed  to  select
Lavandula and Rosmarinus as anti-proliferative agents to be used as co-adjuvants
in  the  treatment  of  non-tumoral  proliferative  dermal  diseases.  Results  of
calorimetric  studies  on  biomembrane  models  confirmed  the  potential
antimicrobial  activity  of  the  selected  oils  due  to  their  interaction  with  the
membrane  that  improves  their  permeabilization.  Nanoparticles  provided  a
prolonged in vitro release of clotrimazole. In vitro studies against C. albicans, C.
krusei  and  C.  parapsilosis,  showed  an  increase  in  the  antifungal  activity  of
clotrimazole-loaded nanoparticles prepared with Lavandula or Rosmarinus, thus
confirming  that  NLCs  containing  Mediterranean  EOs  represent  a  promising
strategy  to  improve  drug  activeness  against  topical  candidiasis.

Nanoemulsions and Microemulsions

Nano- and microemulsions are ultrafine isotropic dispersed systems of two non-
miscible  liquids,  generally  consisting  of  an  oily  phase  dispersed  in  an  aqueous
one.  Most  of  the  physical  and  pharmaceutical  properties  of  nano-  and
microemulsions  are  a  consequence  of  the  small  size  of  the  dispersed  globules
[160].  In  particular,  the  large  specific  surface  area  of  the  colloidal  dispersion
promotes  permeation  of  delivered  active  compounds  across  biological
membranes,  thus  resulting  in  improved  bioavailability  and  pharmacological
efficacy.  Both  these  systems  are  colloidal  dispersions  characterized  by
submicrometer-size  structures  dispersed  in  a  continuous  phase.  Anyway,  while
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microemulsions  are  thermodynamically  stable  systems,  nanoemulsions  are
thermodynamically  unstable  but  kinetically  stable  dispersions.

Nanoemulsions  consist  of  very  small  droplets,  exhibiting  sizes  generally  lower
than  ~300  nm.  Like  conventional  emulsions,  nanoemulsions  are,  from  a
thermodynamic point of view, in a non-equilibrium state. However, the kinetics of
destabilization of nanoemulsions is so slow that they are considered kinetically
stable systems. This is mainly due to the very small size of the dispersed globules,
resulting in the prevention of droplet flocculation and coalescence during long-
term storage, as Brownian motions are able to overcome gravitational separation
forces.  On  the  contrary,  the  formulation  of  microemulsions  corresponds  to  a
thermodynamic equilibrium between all the components (generally water, oils and
nonionic  or  ionic  amphiphilic  molecules).  In  this  respect,  microemulsions  are
formed spontaneously and may exhibit a wide range of structures, for example,
worm-like,  bicontinuous sponge-like,  liquid crystalline,  or hexagonal,  spherical
swollen  micelles.  All  these  different  geometrical  structures  share  common
nanometric  sizes  that  give  them  a  bluish  and  translucent  aspect.

Nano- and microemulsions are gaining increasing interest for effective delivery of
EOs  stem  of  their  simplicity  and  easy  fabrication,  as  well  as  the  limited
manufacturing  costs.  Indeed,  the  number  of  research  reports  investigating  the
encapsulation of EOs in this type of delivery carrier has markedly increased over
the last  years,  but,  at  the same time, it  has amplified the confusion and mix-up
between  these  two  systems.  The  terms  nanoemulsion  and  microemulsion  are
frequently  interchanged  and  not  used  in  the  proper  way  [160,  161].  The
misconception  arises  from  the  fact  that,  in  particular  experimental  conditions,
microemulsions can strongly resemble nanoemulsions, exhibiting a very similar
morphology  in  the  form  of  spherical  nano-droplets  dispersed  in  a  continuous
phase.  This  often  leads  to  a  misinterpretation  of  the  properties  and
characterization  of  the  generated  systems.  In  quite  all  of  the  research  articles
reported and analysed in this chapter, the formulations investigated are defined as
nanoemulsions,  even  if  some  of  them  resemble  much  more  the  behavior  of
microemulsions.  However,  they  will  be  here  reported  and  commented  on
according  to  the  classification  used  by  the  authors.

Micro-  and nanoemulsions  of  EOs have  been extensively  investigated  for  their
antifungal,  antibacterial  and  antibiofilm  activities.  The  most  recent  research
reports  investigating  the  potential  of  micro-  and  nanoemulsions  to  boost  the
application  of  EOs  in  the  pharmaceutical  field  are  summarized  in  Table  5.

Eucalyptus  and  lemongrass  EOs  have  been  formulated  as  nanoemulsions  and
tested  for  their  antibacterial  and  antifungal  activity  [162,  163].  While  they
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demonstrated limited antibacterial efficacy against S. aureus and P. aeruginosa,
these  nanoemulsions  showed  interesting  in  vitro  antifungal  activity.  Anyway,
while pure and nanoemulsified eucalyptus EO showed the same activity against
C. albicans,  C. glabrata  and C. tropicalis,  the nanoemulsion of lemongrass EO
proved to have superior ability, compared to pure EO, to reduce the proliferation
and the adhesion of pathogenic fungi to solid surfaces, inhibiting the formation of
biofilms.  Indeed,  it  was observed,  through the microdilution and macrodilution
techniques, the potentiation of the antimicrobial activity when the lemongrass EO
was nanoencapsulated. In particular, it was evidenced that nanoencapsulation of
the  EO  is  able  to  improve  its  antimicrobial  potential  lowering  the  MIC  values
against  C.  albicans  and  C.  grubii.  The  biofilm  formation  of  C.  albicans  was
inhibited in the same proportion by free oil and nanoemulsion; however, the free
oil  was  tested  at  concentrations  of  1.22 mg/ml  and  2.56 mg/ml,  while  the
nanoemulsion  was  tested  at  lower  concentrations  (0.28 and  0.58 mg/ml
respectively).  Thus,  the  formulation  of  the  EO  as  nanoemulsion  presented  an
antibiofilm activity against C. albicans 4 times greater than the free oil. Similar
results  were  obtained  against  C.  grubii,  with  a  2-time  potentiation  of  the
antibiofilm  activity  of  nanoemulsion  compared  to  pure  EO.  Based  on  the
interesting  results  obtained  in  vitro,  the  antifungal  efficacy  of  lemongrass  and
eucalyptus  nanoemulsions  was  further  tested  in  vivo  using  a  murine  model  of
vulvovaginal  candidiasis  in  BALB/c  mice  [164].  The  nanoemulsions  showed a
superior activity compared to pure EOs and, more interesting, they showed similar
efficacy to a commercial antifungal cream. Indeed, the EOs in their free form did
not show any antifungal activity, while their nanoemulsions were able to reduce
the  fungal  load  similarly  or  better  than  the  control  animal  group  treated  with
miconazole cream. The lemongrass nanoemulsion was also tested against rapidly
growing mycobacteria [165]. These pathogens are opportunistic microorganisms
that can cause both local and disseminated infections and when in biofilm, they
become  highly  resistant  to  antimicrobials  used  in  clinical  practice.  The
formulation was tested on 3 strains of rapidly growing mycobacteria in planktonic
and  sessile  forms.  Although  the  nanoemulsion  was  not  able  to  completely
eradicate  the  mycobacteria  as  observed  with  pure  EO,  it  showed  interesting
bacteriostatic activity probably associated to a slow and prolonged release of the
active  compounds  from  the  nanoemulsion  and  consequent  inhibition  of  the
mycobacteria  growth  in  a  constant  and  controlled  way.
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Table 5. Antimicrobial activity of nanoemulsions or microemulsions formulations encapsulating EOs.

Application Essential Oil Delivery
Vehicle Microorganisms

In Vitro/In
Vivo

Evaluation
Refs.

Antibacterial
agent

Celery (Apium
graveolens) nanoemulsion Staphylococcus aureus in vitro [104]

Cumin (Cuminum
cyminum) nanoemulsion Staphylococcus aureus in vitro [108]

Clove (Syzygium
aromaticum) microemulsion Staphylococcus aureus in vitro [185]

Lavender
(Lavandula x
intermedia)

nanoemulsion Escherichia coli
Bacillus cereus in vitro [43]

Savory (Satureja
montana) nanoemulsion

Listeria monocytogenes
Staphylococcus aureus

Staphylococcus
hemolyticus

Escherichia coli
Klebsiella pneumoniaee

Pseudomonas aeruginosa
Serratia marcescens

in vitro [198]

Antimicrobial
agent

Basil (Ocimum
basilicum) nanoemulsion

Candida albicans
Candida tropicalis

Escherichia coli
Proteus mirabilis

Staphylococcus aureus

in vitro [200]

Eucalyptus
(Eucalyptus
globulus)

Peppermint
(Mentha piperita)

Lemongrass
(Cymbopogon

citratus)
Garlic (Allium

sativum)
Ginger (Zingiber

officinale)
Dill (Anethum
graveolens)

nanoemulsion

Staphylococcus aureus
Enterococcus faecalis

Bacillus subtilis
Pseudomonas aeruginosa

Klebsiella pneumoniae
Escherichia coli
Salmonella typhi
Candida albicans
Aspergillus niger

in vitro
in vivo [189]

Antimycobaterial
agent

Lemongrass
(Cymbopogon

flexuosus)
nanoemulsion

Mycobacterium fortuitum
Mycobacterium

massiliense
Mycobacterium abscessus

in vitro [165]
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Application Essential Oil Delivery
Vehicle Microorganisms

In Vitro/In
Vivo

Evaluation
Refs.

Antimicrobial and
antibiofilm

Eucalyptus
(Eucalyptus
globulus)

nanoemulsion

Pseudomonas aeruginosa
Candida albicans
Candida tropicalis
Candida glabrata

in vitro [163]

Lemongrass
(Cymbopogon

flexuosus)
nanoemulsion

Candida albicans
Cryptococcus grubii

Pseudomonas aeruginosa
Staphylococcus aureus

in vitro [162]

Chamomile
(Matricaria
chamomilla)

nanoemulsion

Escherichia coli
Pseudomonas aeruginosa

Bacillus subtilis
Staphylococcus aureus
Streptococcus pyogenes
Schizosaccharomyces

pombe
Candida albicans
Candida tropicalis

in vitro [188]

Wormwood
(Artemisia annua) nanoemulsion

Escherichia coli
Pseudomonas aeruginosa

Bacillus subtilis
Staphylococcus aureus
Streptococcus pyogenes
Schizosaccharomyces

pombe
Candida albicans
Candida tropicalis

Candida dubliniensis
Candida krusei

in vitro [53]

Antibiofilm

Lavender
(Lavandula

angustifolia)
Rosemary

(Rosmarinus
officinalis)

Savory (Satureja
khuzestanica)

nanoemulsion Pseudomonas aeruginosa in vitro [98]

(Table 5) cont.....
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Application Essential Oil Delivery
Vehicle Microorganisms

In Vitro/In
Vivo

Evaluation
Refs.

Vaginal
candidiasis

Eucalyptus
(Eucalyptus
globulus)

Lemongrass
(Cymbopogon

flexuosus)

nanoemulsion Candida albicans in vivo [164]

Geranium
(Pelargonium
graveolens)

nanoemulsion

Candida albicans
Candida krusei

Candida tropicalis
Candida parapsilosis

Candida glabrata

in vitro [83]

Mentha (Mentha
spicata var.

viridis)
nanoemulsion

Candida albicans
Candida albicans

Candida kefyr
Candida tropicalis

in vitro
in vivo [166]

Clove (Syzygium
aromaticum) nanoemulsion

Candida parapsilosis
Candida krusei

Candida albicans
in vitro [167]

Topical treatment
of candidiasis

Clove (Eugenia
caryophyllus) nanoemulsion Candida albicans

Candida glabrata in vitro [170]

Wound healing

Eucalyptus
(Eucalyptus
globulus)

nanoemulsion Staphylococcus aureus in vitro [172]

Clove (Syzygium
aromaticum) nanoemulsion

Staphylococcus aureus
Escherichia coli

Pseudomonas aeruginosa
Klebsiella pneumoniaee

in vitro [173]

Orange (Citrus
sinensis) nanoemulsion

Klebsiella pneumoniae
Pseudomonas aeruginosa

Escherichia coli
Staphylococcus aureus

in vitro [174]

Tea tree oil
(Melaleuca
alternifolia)

microemulsion not reported in vivo [175]

Cutaneous and
mucosal

leishmaniasis

Orange (Citrus
sinensis) nanoemulsion Leishmania major

Leishmania tropica in vitro [176]

Limon (Citrus
limon) nanoemulsion Leishmania major

Leishmania tropica in vitro [177]

Clove (Syzygium
aromaticum) nanoemulsion Leishmania amazonensis

Leishmania infantum in vitro [178]

(Table 5) cont.....
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Application Essential Oil Delivery
Vehicle Microorganisms

In Vitro/In
Vivo

Evaluation
Refs.

Bacterial and
fungal pneumoniae

Tea tree oil
(Melaleuca
alternifolia)

nanoemulsion

Klebsiella pneumoniaee
Escherichia coli

Acinetobacter baumannii
Staphylococcus aureus

Candida albicans

in vitro
in vivo [183]

Oral health –
mouthwash

Curcuma
xanthorriza nanoemulsion Streptococcus mutans in vitro [187]

Tea tree oil
(Melaleuca
alternifolia)

microemulsion Escherichia coli
Staphylococcus aureus in vitro [199]

Antibiotic resistant
bacteria

Cinnamon
(Cinnamomum

zeylanicum)
Clove (Syzygium

aromaticum)

nanoemulsion

Staphylococcus aureus
(MSSA)

Staphylococcus aureus
(VISA)

in vitro [184]

Thyme (Thymus
daenensis) nanoemulsion Acinetobacter baumannii in vitro [186]

Photodynamic
therapy

Clove (Syzygium
aromaticum) nanoemulsion

Enterococcus faecalis
Staphylococcus aureus

(MRSA)
in vitro [179]

Eucalyptus
(Eucalyptus
globulus)

microemulsion

Staphylococcus aureus
Staphylococcus

epidermidis
Pseudomonas aeruginosa

in vitro [180]

Drug delivery

Eucalyptus
(Eucalyptus
globulus)

nanoemulsion
(SEDDS) Escherichia coli in vitro

in vivo [190]

Clove (Eugenia
caryophyllus) nanoemulsion Candida albicans in vitro [191]

Lippia sidoides microemulsion Enterococcus faecalis in vitro [192]

(Table 5) cont.....
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Application Essential Oil Delivery
Vehicle Microorganisms

In Vitro/In
Vivo

Evaluation
Refs.

Nose-to-brain
delivery

Thyme (Thymus
vulgaris)

Clove (Syzygium
aromaticum)

nanoemulsion

Staphylococcus aureus
Staphylococcus aureus

(MRSA)
Escherichia coli

Klebsiella pneumoniaee
(carbapenem-resistant

CR-Kp)
Acinetobacter baumanni

(carbapenem-resistant
CR-Ab

Pseudomonas aeruginosa
(carbapenem-resistant

CR-Pa)

in vitro [197]

Anti-acne
Oregano

(Origanum
vulgare)

nanoemulsion
Propionibacterium acnes

Staphylococcus
epidermidis

in vitro
in vivo [181]

Upper respiratory
tract infections

Thyme (Thymus
daenensis) nanoemulsion

Pseudomonas aeruginosa
Haemophilus influenzae

Streptococcus
pneumoniaee

in vitro [182]

Interesting antifungal activity was also observed with a nanoemulsion of the EO
obtained  from  Mentha  spicata  var.  viridis  [166].  The  naoemulsion  was
incorporated in a gel  made of carbopol 940 to produce an emulgel  formulation
with texture and viscosity properties acceptable for mucosal administration. The
final emulgel was evaluated in vitro and in vivo for its antifungal activity against
selected  pathogenic  strains  of  Candida  spp.  The  efficacy  of  the  emulgel  was
compared with a simple gel formulation, containing a coarse emulsion of the EO
and with clotrimazole. The emulgel demonstrated a significantly broader zone of
growth inhibition than simple gel when studied against C. albicans using an agar
well  diffusion  assay;  moreover,  compared  to  clotrimazole,  the  efficacy  of  the
emulgel  was  around  68%  that  of  the  antifungal  drug.  The  efficacy  of  the
formulation  was  also  tested  in  vivo  using  a  vaginal  candidiasis  mice  model.
Emulgel  was  observed  to  be  non-irritant  over  the  mucous  membrane  and
therapeutically  more  active  than  simple  gel,  whereas,  in  comparison  to
clotrimazole,  emulgel  was  around  76%  efficacious.

Antifungal activity was also observed with nanoemulsions of clove EO [167]. The
formulations showed in vitro inhibitory effect against C. parapsilosis, C. krusei
and  a  clinical  strain  of  fluconazole-resistant  C.  albicans,  even  if  the
nanoencapsulation  partially  reduced  the  activity  of  the  EO,  as  indicated  by  the

(Table 5) cont.....
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lower MIC values measured. The reduced antifungal activity may be explained by
the addition of coconut oil to clove EO for the preparation of the nanoemulsion. In
fact, as reported by Chang et al. (2012) [168] and further confirmed by Donsì et
al. (2012) [169], the addition of low soluble/low volatile oils, such as coconut oil,
to increase the physical stability of EO nanoemulsions towards Ostwald ripening,
may have a significant influence on the antimicrobial activity of the formulation.
In general,  increasing the ripening inhibitor level in the lipid phase reduces the
antimicrobial efficacy of the nanoemulsions, with a final effect depending on the
type  of  ripening  inhibitor  used.  According  to  this  hypothesis,  de  Oliveira  de
Siqueira and co-authors [170] observed an improvement in the antifungal activity
of clove EO when in nanoemulsion. In this work, the authors produced different
nanoemulsions  using an experimental  design in  order  to  define  the  most  stable
formulation,  but  no  ripening  inhibitors  were  included  in  the  oil  phase  of  the
formulations.  These  nanoemulsions  were  tested  against  C.  glabrata  and  C.
albicans by determination of MIC and MFC (minimum fungicidal concentration)
values.  The  reported  results  showed  significant  improvement  in  the  activity  of
clove  EO  when  in  nanoemulsion,  leading  to  the  reduction  of  the  inhibitory
concentration  compared  to  pure  EO.

Nanoemulsions  of  Pelargonium  graveolens  EO  were  also  investigated  for  the
treatment of vaginal candidiasis [83]. A total of 8 Pelargonium graveolens EOs
from six different countries were investigated. Some differences were observed in
the  antifungal  activity  of  pure  EOs,  depending  on  the  climate  and  growing
conditions, which may lead to changes in the chemical profile of EOs extracted
from  the  same  species  but  from  different  locations.  Anyway,  more  important
differences were obtained with the formulation of the EOs, which were used to
produce  nanoemulsions  and  the  latter  inserted  in  gel  formulations.  Indeed,  the
addition  of  chitosan  to  thicken  the  nanoemulsions  and  promote  their  mucosal
application resulted in the most significant increase of the antifungal activity, as
indicated by the lower MIC values reported. The results showed that MIC values
obtained with the gel formulations were lower for the most part of fungal strains
tested,  with an improvement of  up to 64 times in antifungal  activity against  C.
albicans  and C. glabrata,  when compared to pure EO and to nanoemulsion.  C.
krusei  and  C.  parapsilosis  also  presented  high  susceptibility  for  the  final
formulation, with a reduction in MIC values of up to 32 times for C. krusei and 16
times  for  C.  parapsilosis.  This  enhancement  of  the  antifungal  activity  was
attributed to the presence of chitosan, a polycationic polymer, which can improve
EO  delivery  directly  to  Candida  cells  by  allowing  an  electrostatic  interaction
between  nanoemulsion  and  microorganisms.  Indeed,  chitosan  possesses
antimicrobial property that is mostly associated with the death-proceeding leakage
of intracellular content, induced by malfunction and altered permeability of the
negatively charged cell membrane, consequent to polymer adsorption [171]. For
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this  reason,  chitosan  was  also  used  to  prepare  polymeric  films,  including  a
nanoemulsion of Eucalyptus globulus EO, to be used as potential wound dressing
materials  [172].  Chitosan  films  showed  limited  in  vitro  antibacterial  activity
against  S.  aureus,  which  was  highly  potentiated  by  the  presence  of  the
nanoemulsion.  In  particular,  the  impregnated  films  were  able  to  inhibit  the
proliferation  of  wound  isolated  S.  aureus  proportionally  to  the  volume  of
nanoemulsion  included  in  the  final  formulation.  5%  of  nanoemulsion  per  g  of
polymer  produced a  zone of  inhibition on solid  medium similar  to  the  positive
control  vancomycin,  in  the  agar  disc  diffusion  method,  and  shown bactericidal
activity in the plate count assay.

To promote the topical application of clove EO, a nanoemulsion of this EO was
used to impregnate fast-degradable nanofibers of polyvinyl alcohol prepared by
electrospinning  [173].  The  impregnated  nanofibers  were  tested  for  their
antibacterial  activity  in  vitro  using  a  standard  method for  texture.  The  bacteria
strains  (S.  aureus,  E.  coli,  P.  aeruginosa  and  K.  pneumoniaee)  were  grown  to
reach defined turbidity, then the bacteria suspensions were incubated for 24h with
the  nanofibers.  After  incubation,  a  sample  of  the  suspension  was  cultured  on
nutrient agar plates, then the number of colonies was counted, and the percentage
of  growth  reduction  was  calculated.  Under  these  conditions,  the  impregnated
nanofibers were quickly degraded and able to completely inhibit the growth of all
the  different  bacterial  strains  tested.  Similar  results  were  also  obtained  with  a
nanofibrous mat made of polycaprolactone impregnated with a nanoemulsion of
Citrus sinensis EO [174] and with a semisolid formulation containing Melaleuca
alternifolia  EO  incorporated  in  bicontinuous  microemulsions,  which  resulted
highly effective in the healing process of skin wounds, as it can promote a higher
percentage  of  wound  edge  contraction  when  tested  on  Swiss  mice  [175].  A
formulation analogous to the impregnated fast-degradable nanofibers of polyvinyl
alcohol was also tested for the treatment of cutaneous leishmaniasis [176]. The
impregnated  nanofibers  showed  interesting  leishmanicidal  activity  against
promastigotes of Leishmania major  and Leishmania tropica,  which was mainly
determined  by  the  EO  and  partially  potentiated  by  the  presence  of  chitosan.
Similar leishmanicidal activity against Leishmania major and Leishmania tropica
was  also  observed  with  a  nanoemulsion  of  Citrus  limon  EO  [177],  whereas
nanoemulsions of clove EO resulted in effective against Leishmania amazonensis
and  Leishmania  infantum  in  combination  with  photodynamic  therapy  [178].
Photodynamic  therapy  uses  light  and  non-toxic  photosensitizers  in  order  to
produce cytotoxic  reactive  oxygen species  (ROS),  which are  capable  of  killing
infectious  microorganisms.  Anyway,  many  photosensitizers,  such  as  zinc
phthalocyanine  (ZnPc),  are  insoluble  in  water,  therefore,  their  inclusion  in
nanoemulsions  represents  a  valid  strategy  to  promote  their  photobiological
activity.  Indeed,  a  clove  nanoemulsion  was  able  to  maintain  ZnPc  in  its
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photoactive monomer form, avoiding its crystallization and sustaining its release
over time. The efficacy of ZnPc encapsulated in clove nanoemulsion was greater
than  the  free  compound  against  the  promastigote  stage  of  L.  infantum  and  L.
amazonensis  and  the  amastigote  stage  of  L.  amazonensis.  The  anti-amastigote
activity was also observed in murine RAW 264.7 macrophages infected with L.
amazonensis, producing a biological effect similar to amphotericin B. Moreover,
the  formulation  showed  a  more  selective  photobiological  activity  against
promastigote  stages  than  against  murine  macrophages.  Indeed,  the  formulation
showed a selectivity index (SI = ratio between the CC50 for RAW 264.7 cells and
IC50  for  parasites)  of  5.15  ±  0.60  and  6.74  ±  0.23  for  L.  amazonensis  and  L.
infantum,  respectively,  meaning  that  the  formulation  was  less  toxic  to  the
macrophages than to the parasites. In this work, clove EO did not contribute to the
antileishmanial  activity,  whereas,  in  a  different  investigation  from  the  same
research group, it was able to potentiate the activity of ZnPc against E. faecalis
and methicillin-resistant S. aureus (MRSA) [179]. Similar results were obtained
encapsulating the photosensitizer Toluidine Blue O (TBO) in a microemulsion of
eucalyptus EO [180]. Even in this case, the EO contributed to the inhibition of the
growth of P. aeruginosa. Besides promoting the photobiological activity of TBO,
the microemulsion also enabled good penetration of this photosensitizer through
the stratum corneum of the skin. Indeed, observations of TBO skin distribution by
confocal laser scanning microscopy evidenced the formation of a depot of TBO at
a  depth  of  about  200  μm  in  the  porcine  ear  skin  when  it  was  delivered  in
microemulsion;  on  the  contrary,  TBO  dispersed  in  water  did  not  display
appreciable penetration into the skin. Therefore, these formulations represent an
interesting strategy for the treatment of local infections.

A  nanoemulsion  of  Origanum  vulgare  EO  has  been  proposed  as  a  topical
antibacterial  formulation  for  the  treatment  of  acne  vulgaris  [181].  Origanum
vulgare EO was selected because it showed the strongest antibacterial activity in a
panel  of  7  different  EOs,  comprising  oregano  (Origanum  vulgare),  thyme
(Thymus  vulgaris),  lemongrass  (Cymbopogon  citratus),  tea  tree  (Melaleuca
alternifolia),  mentha  (Mentha  piperita),  lavender  (Lavandula  angustifolia)  and
chamomile (Matricaria recutita). The antibacterial activity was evaluated in vitro
on  P.  acnes  and  S.  epidermidis,  which  are  two  of  the  major  acne-associated
bacteria.  Based  on  the  results  obtained  in  vitro  on  pure  EOs,  oregano  was
formulated as a nanoemulsion and tested in vivo in an acne mouse model. To this
end,  BALB/c  mice  ears  were  intradermally  infected  with  P.  acnes.  After  two
days,  nanoformulation  or  2% erythromycin  was  applied  epicutanously  on mice
ears and then the anti-inflammatory and antimicrobial  activity against  P. acnes
were measured. Treatment of the acne mouse model with the proposed oregano
nanoemulsion  resulted  in  the  reduction  of  inflammation,  bacterial  load  and
healing of tissue superior to the reference antibiotic erythromycin. In addition, the
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rate of reduction of mice ear thickness, post-treatment, was also superior with the
nanoemulsion with respect to erythromycin.

EOs  have  also  been  evaluated  as  therapeutic  options  for  the  treatment  of
respiratory  infections.  A  nanoemulsion  of  Thymus  daenensis  EO  has  been
investigated for its antimicrobial activity against upper tract respiratory infections
(URTIs) [182]. The MIC and MBC (minimum bactericidal concentration) values
showed that the conversion of the EO in nanoemulsion improved its antimicrobial
activity  against  a  number  of  URTI  generating  microorganisms.  Analogously,  a
nanoemulsion  of  tea  tree  oil  showed  good  in  vitro  and  in  vivo  antimicrobial
activity  against  Gram-positive  bacteria,  Gram-negative  bacteria  and  fungi,
including several microbial strains responsible for respiratory infections [183]. In
specific, the formulation showed strong in vitro antibacterial effects on 4 bacterial
strains  (K.  pneumoniaee,  E.  coli,  A.  baumannii  and  S.  aureus)  and  one  yeast
strain. Based on the in vitro activity, the nanoemulsion was tested in vivo for the
treatment of bacterial and fungi-induced pneumoniae in Sprague-Dawley rats. C.
albicans and A. baumannii were used as microbial models to induce lung injuries.
Infected rats were treated with the nanoemulsion administered by aerosolization.
The inhaled formulation was able to remarkably attenuate the symptoms of lung
injury and inflammation in the infected rats, with an efficacy similar to standard
therapies based on fluconazole and penicillin.

EOs possess high activity also against antibiotic resistant pathogens. For example,
clove and cinnamon EOs showed effective in vitro antimicrobial activity against
methicillin-sensitive S. aureus  (MSSA) and vancomycin intermediate S. aureus
(VISA)  strains,  when  formulated  as  nanoemulsion  [184].  The  formulations
showed lower MIC values over bulk oils with 83-166 fold improvement and an
effect dependent on the surfactant used to produce the nanoemulsions. Moreover,
the  formulations  showed  potent  activity  not  only  on  the  bacterial  cells  in  their
planktonic form, but also on their biofilms. SEM analysis visually demonstrated
alterations  in  the  morphology  of  MSSA  and  VISA  when  exposed  to  the
formulation.  Treated cells  showed distorted margins  and irregular  morphology.
These  damages  and  alterations  to  the  integrity  of  the  cytoplasmic  membrane
caused by the nanoemulsion were responsible of nuclear material release and cell
death. Similar results were observed with nanoemulsions of celery, cumin seed
and  thyme  EOs  as  well  as  with  a  microemulsion  of  clove  EO  tested  for  their
antibacterial  properties  through  the  agar  well  diffusion  assay  and  membrane
permeability assay against S. aureus [104, 108, 185, 186]. In all these works, it
has  been  observed  that  in  interaction  with  pathogen  cells,  nanoemulsions  and
microemulsions caused destabilization of membrane permeability and alteration
of its function, determining lysis, considerable cytoplasmic leakage and cell death.
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Different  EOs  proved  to  be  effective  against  microbial  biofilms.  They  are
heterogeneous microbial communities consisting of microcolonies of bacterial or
fungal  cells,  which  develop  immersed  in  a  self-produced  extracellular  matrix,
giving rise to complex three-dimensional structures. The biofilm matrix is mainly
composed  of  exopolysaccharides,  proteins,  lipids  and  nucleic  acids,  which  are
responsible  for  the  defence  mechanism,  preventing  the  penetration  of
antimicrobial  agents.  After  the  biofilm  is  formed,  the  microorganisms  usually
become  more  resistant  to  antimicrobials.  Anyway,  different  nano-  and
microemulsions  of  EOs  have  shown  high  effectiveness  in  the  formation  and
maturation  of  microbial  biofilms.  This  high  efficacy  has  been  explained  by
Ghaderi and co-authors [98] considering the Laplace pressure existing in micro-
and nanoemulsions,  which is  responsible for  the high chemical  potential  of  the
dispersed phase, which provides the driving force for mass transfer and effective
penetration of the active compounds within the extracellular polymeric substances
in the biofilms.  These authors observed that  nanoemulsification of  EOs greatly
enhanced the antibacterial activity against P. aeruginosa PAO1. They formulated
3  different  EOs  (Lavandula  angustifolia,  Rosmarinus  officinalis  and  Satureja
khuzistanica)  and  observed  improved  antibacterial  and  anti-biofilm  activity  of
nanoemulsions  compared  to  bulk  oils.  Indeed,  nanoemulsions  were  able  to
efficiently inhibit biofilm formation and eradicate established biofilms, when used
in  sub-lethal  concentrations.  Similar  efficacy  was  also  observed  with  a
nanoemulsion  of  Curcuma  xanthorrhiza  EO,  which  was  tested  for  its
antimicrobial  activity  on  Streptococcus  mutans  biofilms  [187].  In  dentistry,  S.
mutans  is a representative cause of dental caries among oral bacteria. Adhesive
glucan,  a  metabolite  of  S.  mutans,  adheres  to  the  surface  of  the  teeth  and
aggregates  various  bacteria  to  form  a  biofilm,  which  results  in  dental  caries.
Therefore  the  S.  mutans  biofilm  model  is  useful  to  simulate  the  efficacy  of
mouthwash.  The  Curcuma  xanthorrhiza  EO  nanoemulsion  showed  stronger
antimicrobial  activity  than  commercial  Cool  Mint  Listerine®  against  S.  mutans
biofilm in the mouthwash simulation, showing potential as an anti-biofilm agent
by effectively inhibiting biofilm formation. Confocal laser scanning microscopy
(CLSM)  analysis  was  performed  for  structural  and  quantitative  analysis  of  the
biofilm after live/dead staining of the bacterial cells. CLSM analysis evidenced
that the nanoemulsion treatment effectively damaged the bacterial cells within the
biofilm and  inhibited  its  maturation.  In  the  same  way,  the  effects  of  Artemisia
annua  EO on mature Candida  spp.  biofilms and its  antimicrobial  activity were
studied by comparing a nanoemulsion formulation with a conventional emulsion
[53]. The nanoemulsion showed the best ability to deliver the EO to the internal
water phase of unilamellar liposomes, used as a cellular model for studying the
intracellular delivery of Artemisia annua components from different formulations.
These  results  explained  the  higher  antibacterial  and  antifungal  activity  of  the
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nanoemulsion compared to the conventional emulsion. Indeed, the nanoemulsion
showed stronger antimicrobial activity at lower concentrations against 5 bacterial
strains and 5 fungal strains. Moreover, it was able to reduce the metabolic activity
of mature biofilm-attached Candida species. Similar results were obtained by the
same research group with chamomile EO formulated in nanoemulsion [188].

The antimicrobial activity of EOs should be potentiated by blending different oils
in the same formulation. This approach was used by Osonwa and co-authors [189]
that tested a nanoemulsion containing 9 different oils (not all of them were EOs)
for  its  antimicrobial  activity  against  different  bacterial  and  fungal  strains.  The
formulation  showed  good  in  vitro  activity,  particularly  against  A.  niger  and  S.
aureus, therefore, these strains were used to test the antimicrobial efficacy of the
nanoemulsion in Wistar rats after oral administration. The assay was performed
by treating the previously infected animals with the formulation or with a blend of
the  oils;  ketoconazole  and  ciprofloxacin  were  used  as  positive  controls.  The
formulation  showed  similar  activity  to  ketoconazole  and  only  slightly  lower
activity  than  ciprofloxacin.  No  improvement  was  given  by  the  formulation
compared  to  blended  oils.

In  a  different  approach,  the  antimicrobial  activity  of  EOs  can  be  exploited  to
potentiate that of antibiotics. In this sense, a nanoemulsion of Eucalyptus globulus
EO was used to deliver two different drugs, namely neomycin and thioctic acid
[190].  The  formulation  was  developed  as  a  self-nanoemulsifying  drug  delivery
system (SEDDS) to be administered by the oral route for the treatment of hepatic
coma, a clinical condition with a poor prognosis, that can be improved reducing
the  growth  of  colonic  urea-splitting  bacteria.  The  formulation  was  optimized
using  the  Quality  by  Design  technique,  with  a  three-factor,  three-level
Box–Behnken  statistical  design  and  tested  for  its  antimicrobial  activity,  which
resulted in  being mainly determined by the content  of  the antibiotic  neomycin.
However, the results showed that the presence of eucalyptus oil might have aided
in potentiating the antimicrobial activity of the formulation. In a similar approach,
a  nanoemulsion  of  clove  EO  was  used  as  a  delivery  system  of  ketoconazole
(KTZ) [191].  The EO was selected on the base of  solubility  studies  of  KTZ in
different  oils.  Even  in  this  case,  the  presence  of  clove  EO  in  the  formulation
seems  to  optimize  the  fungicidal  activity  of  KTZ.  Another  research  group
proposed  the  use  of  a  microemulsion  of  Lippia  sidoides,  popularly  known  as
“rosemary  pepper”,  for  the  delivery  of  chlorhexidine  digluconate  (CHX)  to  be
used for disinfection of dental root canals [192]. Dental intracanal disinfection is
crucial  to  achieving  the  success  of  endodontic  treatment,  avoiding  the
maintenance of endodontic infections. CHX can act as an irrigating agent for it,
however,  it  can  cause  tissue  irritation  at  high  concentrations.  Therefore,  the
combination  of  CHX  with  other  antimicrobial  agents  can  be  useful  to  obtain
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synergistic antibacterial effects, enabling the reduction of their doses and, in this
way, making it possible to administer drugs more safely and with minimal adverse
effects. The microemulsions showed antimicrobial effects against Enterococcus
faecalis  similar  to  a  commercial  gel  of  CHX  conventionally  used  for  this
application.  The  E.  faecalis  bacterium  was  selected  for  this  study,  since  it  is
generally  considered  the  main  agent  of  secondary  and  persistent  root  canal
infections.  This  microorganism  has  a  high  capacity  for  penetrating  dentinal
tubules and can survive in harsh environments, such as extreme alkaline pH and
high concentrations of salts, in addition to being resistant to many antimicrobial
agents.  Therefore,  it  is  extremely important  to  the  ability  of  the  formulation to
affect the substantivity of CHX. Indeed, the positive ions released by CHX can
adsorb on dentin and prevent microbial colonization on its surface for some time
past the actual period of application of the drug. The rate of CHX impregnation in
tissues  depends  on the  solubility  of  the  drug in  the  dissolving medium and the
number of available CHX molecules to interact with the dentin. In this study, it
was observed that the microemulsions increased the availability of CHX, affecting
its release pattern, and, in this way, they were able to have been more impregnated
to the dentin blocks, which resulted in greater substantivity to the tissues in the
root dentin model. Therefore, EO-based microemulsions showed great potential
for the administration of drugs for the disinfection of root canals.

Gram-negative bacteria are more resistant to EOs than Gram-positive ones due to
differences  in  the  cell  wall  structures  [193].  Formulating  EOs  as  micro-  and
nanoemulsions aids in delivering active compounds to microbial cells, and, in this
way,  they  can  enhance  their  antimicrobial  activity.  Anyway,  Gram-positive
bacteria  still  remain  more  resistant  than  Gram-negative  bacteria,  even  when
treated  with  formulated  EOs.  While  this  effect  is  generally  observed,  in  some
cases, it  has been reported that inactive compounds can be provided with some
antimicrobial activity, when in nanoemulsions. This effect has been observed by
Gundel and co-authors [162] with lemongrass EO. The free oil showed no activity
against  P.  aeruginosa,  while  the  nanoemulsion  showed  potential  bactericidal
activity. Similar results were also obtained by Garzoli and co-authors [43]. They
formulated Lavandula x intermedia  EO and its hydrolate in nanoemulsions and
tested the prepared formulations against E. coli and B. cereus. Lower MIC values
were observed for the nanoemulsified EO against both bacterial strains, and, even
more,  interesting,  some  activity  was  observed  with  the  formulated  hydrolate,
which  resulted  in  completely  inactive  when  tested  as  bulk  material.  The
improvement  in  biological  activity  observed  with  nanoemulsions  is  usually
attributed to  the  small  size  and large  curvature  of  the  droplets  of  the  dispersed
phase. Nanoemulsions, because of the reduced dimensions, are expected to have
better  interaction  with  the  biological  membranes  of  microorganisms,  since  the
driving force for the mass transport process, i.e., the concentration difference of
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the antimicrobial in the vicinity of the oil droplet and in the bulk phase, is much
higher due to the Laplace effect. However, other factors may also influence the
antimicrobial  activity,  such  as  the  surfactants  used,  the  physical-chemical
characteristics  of  the  formulation,  the  microbial  strains  tested  and  the  EO
composition [169, 193 - 196]. In some cases, these additional factors can produce
a reduction in the antimicrobial activity of the formulation compared to pure EO
[197]. Rinaldi and co-authors [198] reported slightly decreased activity for clove
and  thyme  EOs  in  nanoemulsion,  whereas  the  same  formulation  was  able  to
potentiate the activity of Satureja montana EO, but no explanation was provided
by the authors for the different behavior. A reduction of the antimicrobial activity
was  also  observed  with  a  microemulsion  of  tea  tree  oil  (TTO)  stabilized  by
polysorbate 80 [199]. In vitro experiments on the antimicrobial properties of the
colloidal  system  against  E.  coli  and  S.  aureus,  revealed  that  the  TTO
encapsulation  led  to  a  significant  loss  of  biocidal  activity.  This  effect  was
attributed to two different phenomena: (1) the electrostatic repulsion between the
TTO-containing  colloidal  particles  and  the  bacterial  outer  surface  and  (2)  the
preferential  solubilization  of  the  EO  in  the  hydrophobic  core  of  the  dispersed
structures.  This  study  provides  important  information  for  improving  the
effectiveness  of  EOs-containing  mouthwashes  stabilized  by  polysorbates  80,
because  the  presence  of  the  surfactant  may  negatively  affect  the  antimicrobial
efficacy of the EO.

Overall,  these  results  highlight  the  need  for  accurate  characterization  of  the
formulations.  In  particular,  it  is  essential  to  assess  whether  the  formulation
process may have significantly affected the composition of the EO, because there
is a direct correlation between chemical composition and biological properties of
EOs. However,  analyzing the present  literature,  it  can be seen that  this  issue is
often ignored. Only a few reports investigate the composition of the EO after the
encapsulation process,  and most  of  them use harsh methods which may further
modify the EO composition [200], whereas mild and non-destructive analytical
methods should be preferred [43, 196] for this purpose.

CONCLUDING REMARKS

EOs certainly, represent a potent alternative or adjuvant to traditional antibacterial
and  antifungal  treatments  in  the  pharmaceutical  field;  they  also  represent  a
powerful tool to tackle the problem of antibiotic resistance. Their encapsulation in
lipid-based  delivery  vehicles  can  effectively  enhance  their  use,  improving
penetration  of  EOs  across  biological  membranes,  chemical  stability  and
dispersion in aqueous fluids. By the way, many efforts should be made for precise
and complete characterization of the delivery vehicles. In particular, the effect of
the  encapsulation  process  on  the  composition  of  the  selected  EOs  should  be
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routinely evaluated in order to try to find better correlations with the antimicrobial
activity.  Indeed,  some  preparation  techniques  may  cause  a  significant  loss  or
degradation of some of the EO components, and consequently, a modification of
the antimicrobial activity may be expected, as there is a direct correlation between
chemical  composition,  structure and biological  properties of  EOs.  On the other
hand, in some cases, a reduced biological activity may not be caused by the loss
of active compounds of the EO, but it can be due to the excipients used to prepare
the formulation or to the strategies used to stabilize the delivery vehicle, which
fail to release the EO or release it at an improper rate. When these events happen,
it is necessary to redesign the formulation.

Based  on  these  considerations,  in  our  opinion,  a  proper  characterization  of  the
composition of EOs before and after their formulation and their monitoring over
time represent an essential requirement for a correct analysis and interpretation of
the  experimental  results  and,  consequently,  for  the  development  of  highly
effective  formulations,  which  can  really  improve  and  make  feasible  the  use  of
EOs in the pharmaceutical field as antimicrobial agents.
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CHAPTER 4

Antimalarial  Endoperoxides:  from  Natural
Sesquiterpene  Drugs  to  a  Rising  Generation  of
Synthetic  Congeners
Grazia Luisi1,*

1 Department of Pharmacy, University G. d Annunzio of Chieti-Pescara, 66100 Chieti, Italy

Abstract: Malaria is a vector-borne tropical disease caused by protozoans belonging to
the genus Plasmodium, which has been scourging mankind for hundreds of millions of
years. Despite the masterful progress in preventing disease transmission and reducing
morbidity and fatal outcomes, malaria is on the rise again. Global concerns are focused
on the spread of resistance to current drugs in the management of severe or ultimately
lethal  P.  falciparum  infection.  To  fully  exploit  the  potential  of  existing  agents  and
overcome their critical drawbacks, novel synthetic and formulation approaches have
been explored. In this field, the clinical value of the natural drug artemisinin (ART) and
its  derivatives  have been firmly established, and ART combination  therapies  (ACTs)
have  been  recommended  as  first-line  treatment  against  infection  caused  by
chloroquine-resistant (CQR) P. falciparum strains. Over time, however, ART treatment
options have become inadequate, and strict demand for new and effective agents has
emerged.  In  this  chapter,  the  medicinal  chemistry  aspects  of  artemisinins  will  be
discussed, covering their unique mode of action and their structural features in relation
to  stability,  pharmacokinetic  profile,  and  antiplasmodial  activity.  Beyond  ACT
strategies,  significant  classes  of  compounds  obtained  through  both  ART  covalent
bitherapy and dimerization approaches will be presented as well. Furthermore, a special
section  will  focus  on  the  most  recent  endoperoxide-based  synthetic  antimalarials  as
new powerful and cost-effective alternatives to the “golden drug”. It is expected that
reported results will provide a strong incentive for further studies, and that unceasing
research  efforts  will  succeed  in  reaching  the  eventual  eradication  of  this  endemic
plague.
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INTRODUCTION

Malaria  is  a  devasting,  vector-borne  parasitosis  caused  by  ancient  unicellular
protozoans of the genus Plasmodium, members of the large Apicomplexa taxon.
This  plague  is  endemic  in  tropical  and  sub-tropical  regions,  affecting
approximately  40%  of  the  world’s  population.  Although  malaria  ranks  fourth
among the major human infectious diseases, after pneumococcal acute respiratory
infections, acquired immunodeficiency syndrome (AIDS) and tuberculosis (TBC),
it  is  recognized  that  Plasmodium  spp.  represent  the  deadliest  parasite  species
throughout  the  history  of  mankind  [1].  The  reasons  for  parasite  survival  and
continued  infection  in  the  human  race  are  the  results  of  an  intricate  evolutive
interplay between hosts, pathogens, and infected vectors, deeply connected with
climatic and socio-economic variables.

Over time, an impressive advance in antiplasmodial prophylaxis, chemotherapy,
and  transmission  control  through  national  malaria  campaigns  has  been  made,
culminating in a sensible decline in disease incidence and associated mortality in
many areas of  the world in the last  decade [2].  According to the World Health
Organization  (WHO),  in  2019,  malaria  affected  229  million  people,  with  22
million fewer cases than in 2010 [3]. Unfortunately, in recent years the decrease
in malaria burden has stagnated, owing to the persistence of critical conditions in
endemic regions that undermine the success of therapeutic/prophylactic protocols
and  vector  containment  programs.  However,  the  main  causative  factor  for  this
debacle resides in the great genetic variability of the etiologic agent, leading to a
highly adaptive response under widespread drug pressure.

The  case  of  parasite  drug  resistance  is  ideally  exemplified  by  the  first-line
antimalarial agent chloroquine (CQ); introduced in 1950s, this very effective and
remarkably cheap drug was the most widely used in the 4-aminoquinolines class
for  the  treatment  of  uncomplicated  Plasmodium  falciparum  malaria  till  the
emergence,  over  the  course  of  30  years,  of  chloroquine-resistant  P.  falciparum
(CRPF)  strains.  The  main  mechanism  of  resistance  envisions  subsequent
mutations  in  the  gene  Pfcrt,  which  encodes  for  the  parasite  CQ  resistance
transporter (PfCRT) protein, whose amplification leads to an enhancement in the
extrusion of the xenobiotic from the digestive vacuole (DV) of the protozoan [4,
5]. Moreover, the degree of resistance can be modulated by polymorphisms in the
P. falciparum multidrug resistance-1 (PfMDR1) protein, an ABC transporter that
also regulates the flux of CQ across the DV membrane [5, 6].

An important  contributor  to  resistance  is  the  elimination  time  of  the  dispensed
agent from the body; by administering drugs with short half-lives, the window of
selection (i.e., the time during which antimalarial drugs persist at sub-therapeutic
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concentrations) for drug tolerance and resistance are minimized. Accordingly, at
least  till  2008,  there  was  no  evidence  for  clinically  relevant  resistance  of
Plasmodium  parasites  to  artemisinin,  a  superior  drug  for  the  treatment  of
multidrug-resistant falciparum malaria, possessing a very short half-life (~ 1-3 h).
The approach of ART co-formulation with a second, longer-acting antimalarial,
commonly  termed  artemisinin  combination  therapy  (ACT),  has  emerged  as  a
means  to  confer  greater  protection  against  the  development  of  drug-resistant
mutants, preserving the effectiveness of ART and the partner agent in the time.

Furthermore, present Plasmodium species are the result of a hundred million years
of apicomplexan evolutionary adaptation to increasingly elaborate host innate and
acquired immunity, and consequently display a high degree of antigen variability
to escape such defenses, and to arrange alternative invasion pathways through the
generation of functionally redundant ligands for human cell receptors [7, 8]. This
scenario emphasizes the need to broaden the range of therapeutic targets and the
variety  of  replacement  agents  in  order  to  overcome  the  current  protocols’
drawbacks and delay antimalarial resistance for the longer-term goal of malaria
elimination.  Recent  advances in our  understanding of  biology and genomics of
malaria  parasites  may  provide  information  for  putative  novel  structures  to  be
targeted, and help in designing new generations of anti-malarial drugs based on
unexplored  chemotypes  and acting  with  different  mechanisms.  On these  bases,
plentiful  strategies  for  anti-malarial  drug  discovery  are  currently  inquired,  and
progress  in  high  throughput  screening  and  computer-aided  technologies  offers
exciting opportunities for developing suited candidates.

A  mention  of  the  general  aspects  of  the  vector-borne  disease  could  not  be
presented  here  for  brevity’s  sake,  and  readers  are  then  referred  to  the
overwhelming literature existing on the topic [9 - 20]. However, a brief excursus
on the antimalarial drugs currently in use will introduce the special focus on the
ART “miracle molecule” and its congeners.

THE NATURE-DERIVED MAINSTAYS OF ANTIMALARIAL THERAPY

The existing antimalarial therapeutic arsenal owes a great tribute to nature since
most  of  the  curative  molecules  derive  from  medicinal  plants,  fungi,  and
microorganisms. The therapeutic effect of herbal medicines traditionally used by
local communities was confirmed and defined by time, and natural agents such as
quinine,  artemisinin,  febrifugine,  and  lapachol  have  been  the  cornerstone  of
antimalarial  treatment  for  thousands  of  years.  Again,  antimalarial  screening  of
natural products from fungal and microbial sources, of both terrestrial and marine
provenience, has revealed a wide potential in view of their chemical diversity [21,
22].
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Further  optimization  of  clinical  effectiveness  has  been  achieved  through
modification of  structural  and physical-chemical  properties  of  these  molecules,
leading  to  a  wide  range  of  therapeutic  optional  remedies,  which  are  distinct  in
chemistry,  mechanisms  of  plasmocidal  action,  pharmacokinetic  profiles,  and
toxicity  issues  [23  -  25].  The  existing  drugs  can  thus  be  grouped  into  major
chemical and mechanistic classes, i.e., arylaminoalcohols (quinine 1, mefloquine
2,  halofantrine  3,  lumefantrine  4,  (Fig.  1),  quinoline  derivatives,  such  as
chloroquine  (CQ)  5,  amodiaquine  6,  primaquine  7  (Fig.  2)  naphthoquinones,
antifolates,  antimicrobials,  and  spiroindolones  (compounds  8-21,  Fig.  (3),
sesquiterpene  lactone  endoperoxides  (artemisinins)  and  related  synthetic
tri/tetraoxanes  and  trioxolanes.

Fig.  (1).   Antimalarial  arylaminoalcohol:  quinine  1  and  its  congeners  2-4  obtained  through  quinuclidine
nucleus disruption.

Critical drawbacks in current therapy are represented by the limited spectrum of
activity of traditional agents and the occurrence of Plasmodium resistance, which
have requested novel approaches, above all, the formulation of drug combinations
(artemisinin-based  or  not  artemisinin-based)  [26],  the  exploitation  of  covalent
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bitherapy [27], and the use of drug resistance reversers [28]. Despite this, there is
still an urgent need of molecules targeting the multiple life stages, particularly the
asymptomatic liver phase and the gametogenic blood stage, for all the species of
human malaria. Moreover, in severe falciparum malaria, there is a strict demand
for  drugs  preventing  the  parasite  maturation  to  the  cytoadherent  pathological
stage,  which  is  primarily  responsible  for  the  life-threatening  complications.

In  this  challenging  fight,  there  is  the  consciousness  that  a  number  of
unprecedented parasite proteins may be targeted by drugs built on new chemical
entities, disclosing a new therapeutic era for the control and elimination of this
plague.

Fig. (2).  The antimalarial quinoline family: 4-amino- (5, 6) and 8-amino- (7) derivatives in antimalarial use.

 

(Fig. 3) contd.....
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Fig.  (3).   Miscellaneous  antimalarial  agents,  including  atovaquone  8  and  lapachol  9,  antifolates
(pyrimethamine 10, trimethoprim 11, proguanil 12, chlorproguanil 13, sulfadoxine 14, sulfamethoxazole 15,
dapsone  16),  antimicrobials  (tetracycline  17,  doxycycline  18,  clindamycin  19,  azithromycin  20),  and  the
spiroindolone cipargamin 21, a spirotetrahydro-β-carboline derivative.

In the following sections of this chapter, the importance of the prototype of plant-
derived  sesquiterpene  lactone  endoperoxide,  namely  artemisinin,  will  be
emphasized in regard to its pharmacological and medicinal chemistry aspects. The
key  role  of  this  natural  drug  and  its  combinations  with  auxiliary  agents  in  the
current antimalarial regimens, the potential of semisynthetic derivatives, codrugs,
hybrids  and  next-generation  synthetic  analogs,  derived  from  the  most  recent
rational approaches holding promise for new drug development, will be covered
here.
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SESQUITERPENE  LACTONE  ENDOPEROXIDES:  A  NATURAL
SOURCE OF 1,2,4-TRIOXANE-CONTAINING ANTIMALARIAL DRUGS

The Class of Sesquiterpene Lactones

With  over  10,000  elucidated  structures,  sesquiterpenes  or  sesquiterpenoids
constitute the largest family of terpenoids. This group of lipophilic compounds is
widely present as secondary metabolites in plants, fungi, insects, bacteria, marine
algae  and  invertebrates  [29  -  31],  where  they  play  an  important  role  in
communication and defence, acting as attractants, deterrents, and antifeedants [32,
33].

Sesquiterpenes differ from mono-, di-, and tri-terpenes since they derive from the
combination  of  three  isoprene  (C5)  units:  their  15-carbon  atom  precursor,  the
ubiquitous farnesyl pyrophosphate, undergoes programmed carbocation cascade
reactions,  providing  a  variety  of  sesquiterpene  frameworks,  which  are  often
furtherly regio- and stereo-selectively subjected to hydroxylation or epoxidation
reactions  [34].  Sesquiterpenes  exist  in  a  wide  variety  of  structures,  including
linear,  monocyclic,  bicyclic,  and  tricyclic  hydrocarbon  backbones.

Approximately 50% of this large class is represented by sesquiterpene lactones,
containing  at  least  one,  generally  pentacyclic  (γ),  lactone  ring  in  a  linear  or
annular skeleton. Over 5000 different structures of sesquiterpene lactones, mainly
isolated as primary active constituents from the Asteraceae (Compositae) family,
but  also  occurring  in  Apiaceae,  Illiciaceae,  Magnoliaceae,  Solanaceae,  and
Euphorbiaceae  [35],  have  been  elucidated,  uncovering  an  enormous  chemical
heterogeneity  [36].  Suffice  is  to  say  that,  based  on  their  skeletal  arrangement,
cyclic  sesquiterpene  lactones  are  grouped  into  seven  major  classes:
germacranolides  and  heliangolides  (10-membered  ring),  eudesmanolides  and
eremophilanolides (6-6 bicyclic compounds), guaianolides, pseudoguaianolides,
and δ-lactone-featuring hypocretenolides (5-7 bicyclic compounds) (Fig. 4) [37].

Fig. (4).  Main classes of sesquiterpene lactones, exemplifying the most common arrangement of open or
fused cycles.
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Because of their unmatched structural diversity, sesquiterpene lactones display an
impressive  biological  spectrum,  including  anti-inflammatory,  anticancer,
antidiabetic,  antimicrobial,  antiviral,  antimalarial,  and  insecticidal  activities,
largely exploited in traditional medicine [38 - 41]. The lactone ring is prevalently
fused to the remaining skeleton in a trans configuration [42, 43].

The  major  responsible  group  for  the  biological  effects  of  these  lactones  is  the
α-β-unsaturated  carbonyl  group,  which  selectively  acts  as  a  strong  alkylating
agent  in  Michael-type  addition  reactions  with  intracellular  nucleophiles  (i.e.,
cysteine  residues  of  regulatory  proteins)  [44],  leading  to  a  disruption  of  their
biological functions.

Sesquiterpenes  containing  not-activated  lactone  rings  have  been  isolated  from
plants, and their unusual structures have been elucidated. These include the highly
neurotoxic  β-lactone  anisatin  [45],  and  δ-lactones,  such  as
floridanolides[REMOVED HYPERLINK FIELD] [46], wedelolides [47], and the
antimalarial  drug  artemisinin.  This  latter  is  furtherly  clustered  in  the  family  of
sesquiterpene  lactone  endoperoxides,  a  rare  group  of  natural  derivatives
containing  stably  arranged  alkyl  peroxide  rings  [48,  49].

Sesquiterpene Lactone Endoperoxides: the Artemisinin Family
The Discovery of the Nobel Molecule

One  of  the  most  substantial  advances  in  malaria  chemotherapy  has  been  the
discovery  of  artemisinin  22  (Fig.  5).  The  sesquiterpene  drug  is  present  in
meaningful quantity in leaves (particularly the glandular trichomes), stems, and
flowering buds of the shrub Artemisia annua L. (qinghao or sweet wormwood), a
Chinese medicinal plant of the tribe Anthemideae (Asteraceae), whose traditional
use dates back to 168 B.C. The adoption of qinghao to treat periodic fevers and
malaria  was  mentioned  by  Ge  Hong  in  a  Handbook  of  Prescriptions  for
Emergencies,  in  full  Eastern  Jin  Dynasty  (317-420  A.D.).

Fig. (5).  The molecule of artemisinin (ART) 22 with its skeleton numbering.
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However,  it  was  only  during  the  Cultural  Revolution  that  the  Chinese
government,  in  an  effort  to  support  North  Vietnam  troops  fighting  in  malaria-
plagued areas, started the antimalarial “Project 523”, which should have brought
in  1972  Prof.  Youyou  Tu  and  her  research  team  [50]  to  first  isolate  seven
bioactive sesquiterpene compounds from the ethereal extracts of aerial parts of A.
annua;  among  them,  22  (quinghaosu,  meaning  “principle  from  qinghao”)  was
found to possess the most potent antimalarial properties. Having the best on the
difficult  task  of  determining  the  complex  structure  of  the  new  molecule,  the
related  dihydroartemisinin  (DHA)  23,  and  its  key  derivatives,  the  lipophilic  β-
artemether 24 and the water-soluble sodium salt of the α-conFig.d artesunic acid
25 (sodium artesunate), were then prepared by the Chinese team as more versatile
agents (Fig.  6).  Subsequent clinical  studies established the unprecedented ART
antimalarial efficacy, and Prof. Tu finally received the Nobel Prize in 2015 for her
inestimable work.

Fig. (6).  The fab four.

The Bioactivity Profile of Artemisinin

Since then, ART and its derivatives have been successfully used as first-line drugs
in the cure of falciparum malaria, proving effective also against parasite strains
resistant to CQ, and still represent the most outstanding part of the protocols for
severe disease treatment [51]. These agents are characterized by fast-acting and
low  nanomolar  activity,  directed  against  the  broadest  range  of  parasite
developmental  stages  [52,  53].  Artemisinins  have  been  shown  to  possess  non-
malarial activities as well, particularly anti-cancer effects mediated by oxidative
stress [54 - 56].

Unlike  conventional  antimalarials,  that  target  Plasmodium  mature  stages,  ART
derivatives rapidly clear circulating rings, reducing parasitaemia and preventing
the  consequences  of  the  cytoadherence  phenomenon.  In  addition,  they  possess
gametocidal properties, which contribute to the blocking of disease transmission.
The  toxicity  of  artemisinins  is  negligible,  as  only  reversible  effects  on
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erythropoiesis  and allergic reactions are observed in humans,  although rare but
significant toxicity has been reported [57].

The Production of Artemisinin

In  view  of  its  therapeutic  relevance,  there  is  a  high  demand  for  ART  in  the
international market, increasing dramatically each year. The ART yield from A.
annua is a serious limitation to meet the current need since it ranges from 0.01 to
a maximum of 2% of the dry weight of the shrub tissue. Alternative strategies,
including plant breeding technologies [58, 59], biotechnological approaches [60],
and total and semi-syntheses [61 - 63], have been investigated to enhance ART
production  and  availability  of  this  too  expensive  compound.  The  possibility  of
engineering the ART production can benefit from a thorough understanding of its
biosynthetic route.

The  anabolic  cascade  belongs  to  the  isoprenoid  metabolite  pathway,  and  it
originates  from  the  common  biosynthetic  precursor  isopentenyl  diphosphate,
formed  via  either  the  cytosolic  mevalonate  route  or  the  plastid-localized
mevalonate-independent  pathway  [64].  Among  the  different  key  enzymes
involved  in  the  biosynthesis,  amorpha-4,11-diene  synthase,  a  sesquiterpene
cyclase which catalyzes the annulation of farnesyl diphosphate to amorpha-4,1-
-diene, has been postulated as the main regulatory switch for the final assemblage
of  dihydroartemisinic  acid  (DHAA),  the  precursor  of  ART  22.  The  last  non-
enzymatic step is the conversion of DHAA to 22 through a ROS-mediated photo-
oxidative  reaction  involving  highly  reactive  allylic  hydroperoxides  as
intermediates [65, 66]. Synthetic approaches to 22 are not economically feasible
because of  costly terpene-based starting materials  and long reaction sequences,
envisioning  redundant  protecting  group  strategies.  A  relatively  straightforward
enantioselective total synthesis of 22, starting from the cheap cyclohexenone and
claiming only five pots, was reported by Zhu and Cook in 2012 [67]; nevertheless,
very unlikely the chemical routes will address the shortage problem, or supplant
the extraction from A. annua as the favored method of supply.

Uncovering Artemisinin Structure and Key Determinants for Activity

From  the  structural  point  of  view,  22  belongs  to  the  amorphene  sub-group  of
seco-cadinanes. The amorphane/cadinane group of bicyclic sesquiterpenes is by
far the largest class of sesquiterpenes found in A. annua,  which incorporate the
characteristic decaline (cadinane or cadalane) scaffold resulting from the C-1/C-6,
C-5/C-10 cyclization of farnesyl pyrophosphate. Amorphane sesquiterpenes differ
from their cadinane counterparts, characterized by a trans-decalin ring junction
(1α,6β),  for the presence of a cis-arranged scaffold (1β,6β) (Fig.  7).  The prefix
“seco“  indicates  that  carbon-carbon  bond  cleavage  has  occurred,  in  this  case
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between C-4 and C-5, accompanying formation of the 1,2,4-trioxane ring in the
final biosynthetic phase of 22 [68, 69].

Fig. (7).  Bicyclic sesquiterpenes: amorphane/cadinanes scaffolds.

The structure of this enchanting molecule consists of four substituted rings fused
together (Fig. 8): a 1,2,4-trioxane ring (A), adopting a boat conformation in the
solid state, a 1,2-dioxaepane ring (B), a cyclohexane ring (C), and a δ-lactone ring
in the trans-conformation (D).

Fig. (8).  Labeling system and absolute configuration of (+)artemisinin.

Furthermore,  22  possesses  unique  perketal  and  acetal  functionalities,  very
appealing to organic chemists, which represent the most sensitive elements in an
unusually stable sesquiterpene lactone skeleton bearing an endoperoxide bridge.
Due to the presence of 7 asymmetric carbon atoms in the molecule, theoretically,
27  = 128 diastereomers could be possible.  ART 22  is  a  dextrorotary compound
([α]D admitted range: +75°/+78° in ethanol as testing item of identification) [70]
with absolute configuration at chiral centres 3R, 5aS, 6R, 8aS, 9R, 12S, and 12aR,
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corresponding  definitely  to  (3R,5aS,6R,8aS,9R,12S,12aR)-3,6,-
-trimethyloctahydro-3H-3,12-epoxy  [1,  2]dioxepino[4,3-i]isochromen-10(12H)-
one.

ART suffers from poor solubility, either in lipid or water, although it displays a
certain  degree  of  lipophilicity  and  amphiphilic  character  that  are  considered
crucial  for  membrane  cell  permeation.

Extensive SAR studies have established which are the structural determinants for
ART bioactivity, clarifying in the meantime that the intact molecular architecture
of 22 is not necessary for the maintenance of the antimalarial activity [71 - 73].
Neither  the  peroxide  function  nor  the  1,2,4-trioxane  ring  alone  is  sufficient  to
confer  antimalarial  activity,  but  they  are  accepted  as  an  essential  part  of  the
pharmacophore  when  assembled  within  the  scaffold.  Accordingly,  derivatives
where  the  endoperoxide-carrying  ring  is  opened,  or  the  endoperoxide  bridge  is
broken  or  substituted,  are  completely  devoid  of  activity,  as  exemplified  by  2-
deoxyartemisinin (or deoxartemisinin) 26 (Fig. 9)., the reduced form of the drug
containing only an ether bridge.

Fig. (9).  2-Deoxartemisinin 26, (+)-13-carba-artemisinin 27, β-arteether 28, 10-deoxoartemisinin 29, 11-az-
-artemisinin  30,  (±)-6,9-desmethylartemisinin  31,  (+)-3-hydroxy-methylartemisinin  32,  and  the  natural
sesquiterpene  artemisitene  33.
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Interestingly, the non peroxidic oxygen atom may be replaced by a methylene unit
to give the still, albeit less potent 13-carba-artemisinin 27, characterized by a 1,2-
dioxane ring.  Again,  the 1,2-dioxaepane (B) and cyclohexane (C) rings are not
required  for  activity.  As  far  as  the  importance  of  acid-labile  functions  is
concerned,  the  perketal  moiety  has  been  found  essential  for  good  activity.

The six-membered lactone ring is the most versatile, since the lactone carbonyl in
C-10 can be reduced to give DHA 23, whose schizonticidal potency in vitro is up
to  twice  that  of  the  parent  compound.  The  significance  of  23  preparation,
disclosing the stability of the peroxide unit under certain chemical conditions such
as  NaBH4,  LiAlH4,  or  di(isobutyl)aluminum  hydride  (DIBAL)  as  common
reducing agents, is fundamental as it opened the way to the synthesis of the first
generation of ART derivatives, grouped in lipid- and water-soluble drugs, which
address the problem of the low ART solubility in both fractions. Derivatization,
however, does not eliminate potential instability, because β-artemether 24 and β-
arteether 28 still feature acetal groups, and artesunic acid 25 an acetal ester bond,
at their C-10 centers.

Complete  C-10  deoxygenation  resulted  in  the  remarkably  effective  10-
deoxoartemisinin  29,  showing  nanomolar  activities  against  both  chloroquine-
sensitive (CQS) and chloroquine-resistant (CQR) P. falciparum strains superior to
that of 22, and approximately similar effect in vivo against P. berghei.

The lactone ring can be bioisosterically replaced by a lactam counterpart, to afford
11-aza-artemisinin 30, without affecting the antimalarial efficacy. The SARs of
more  extended  modifications  at  the  C-10  and  C-11  positions  of  22  will  be
presented  afterwards.

As far as peripheral methyl groups are concerned, (±)-6,9-desmethylartemisinin
31,  prepared  by  Avery  et  al.  starting  from  pyrrolidinocyclohexene  and  cis-1,-
-dichloro-2-butene, was shown to maintain significant antimalarial activity against
resistant strains of P. falciparum [74].

If the removal of both 22 methyl substituents at C-6 and C-9 is still compatible
with antiplasmodial activity of the resulting derivative, the C-3 methyl group has
been suggested to be a crucial determinant to establish lipophilic interactions with
putative  proteins  of  the  parasite,  as  evidenced  by  biological  results  on  fully
synthetic derivatives [75, 76]. Analogs of 22 substituted at C-3 were found to be
less active than those substituted at C-9 with ethyl and propyl groups (maximal
activity),  whilst  (+)-3-hydroxy-methylartemisinin  32  was  found  completely
inactive.
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In addition, desaturation of the C-9−CH3  single bond is naturally present in the
sesquiterpene endoperoxide artemisitene 33, isolated as a minor constituent in an
American  variant  of  A.  annua  by  Acton  et  al.  in  1985  [77].  Although  its
antimalarial  profile  is  inferior  with  regard  to  22,  artemisitene  can  be  used  for
derivatization,  in  view  of  the  presence  of  the  α,β-unsaturated  lactone  trap
(Michael  acceptor).

The Mechanism of Plasmocidal Action

Although  the  ART  mechanism  of  action  is  an  intensely  debated  and  still
controversial subject, there is general concordance that the endoperoxide linkage
is  the  key  determinant  for  the  antimalarial  activity  of  ART and  its  derivatives.
According to the widely accepted “C-radical hypothesis”, heme represents both
the  activator  and  the  target  of  ART  [78]:  the  peroxide  bridge  is  reductively-
cleaved in a heme-dependent process involving the redox-active metal center of
the  iron(II)-protoporphyrin  IX  unit,  released  during  the  parasite  digestion  of
hemoglobin. Heme reacts with ART much more efficiently than the other iron(II)-
containing species, such as free ferrous iron or ferrous sulfide. Evidence that ART
reductive  activation  can  only  occur  if  heme  is  not  trapped  inside  hemoglobin
clearly  links  activity  with  the  unique  heme  detoxification  pathway  of  malarial
parasites, i.e., hemoglobin digestion, explaining the high ART specificity towards
Plasmodium  spp.  Following  an  electron  transfer  from  the  low-valent  iron(II)-
heme  to  the  antibonding  σ*  LUMO  orbital  of  the  peroxide  bond,  short-lived
alkoxy-radicals  are  formed  which,  after  a  thermodynamically  favored
intramolecular rearrangement, give rise to primary or secondary carbon-centered
radicals.  These,  in  turn,  alkylate  heme  to  generate  non-polimerizable  covalent
adducts, highly toxic for the parasite, as previously discussed, or target a number
of  sensitive  macromolecular  Plasmodium  proteins  [79  -  81],  such  as  PfCRT,
PfMDR1, and the translationally controlled tumor protein (TCTP) [82], disrupting
many  essential  pathways  and  leading  to  parasite  death.  Consistent  with  this
mechanism,  ART  and  its  derivatives  actually  represent  bioprecursors,  that
absolutely  require  endoperoxide  group  cleavage  for  drug  activation  and
subsequent  antiplasmodial  activity  in  the  heme-rich  environment  specific  to
infected  erythrocytes.

The  alternative  hypothesis  envisions  a  dual-acting  role  of  mitochondria  in  the
ART  specific  action:  due  to  its  lipophilic  nature,  the  drug  reaches  the
mitochondria membrane, where it is activated by some unknown factors, possibly
the  components  of  electron  transport  chains,  with  the  local  generation  of  free
radicals; the dramatic increase in ROS generation causes mitochondrial membrane
depolarization, impairment of organelle normal functions, and eventually leads to
cellular dysfunction and apoptosis [83, 84]. Existing data demonstrated that the
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intrinsic difference between malarial and mammalian mitochondria is the basis of
ART  specificity.  However,  the  mitochondria-based  model  cannot  exclude  the
influence  of  heme  on  ART  activation,  as  heme  is  mainly  synthesized  in
mitochondria,  and  its  role  as  a  catalytic  source  of  ROS  is  well  defined  [78].

Controversial  evidence  regards  the  implication  of  PfATP6,  the  P.  falciparum
orthologue  of  human  sarco-endoplasmic  reticulum  Ca2+-dependent  ATPase
(SERCA), as a target.  The hypothesis implies that,  upon activation by catalytic
iron, ART radicals may bind to PfATP6 through specific interactions,  which is
followed by irreversible protein damage [81, 85 - 87].

Several computational studies, based on molecular docking and unconventional
quantitative structure-activity relationship (QSAR) analyses, were used to predict
the  antimalarial  activity  of  artemisinins  with  unknown activity  [88].  Molecular
docking simulations were used to probe the interactions between artemisinins and
hemin. Based on the putative bioactive conformations obtained in the selection,
3D-QSAR models were generated and shown to have good predictive accuracy. A
good  correlation  was  found  between  antimalarial  activity  and  binding  energy
deriving  from  electrostatic  interactions  involving  the  peroxy  group  of  the
analogues and the Fe2+ in hemin. The binding mode is beneficial to the electron
transfer from iron to the peroxy group, which may lead to the rupture of the bond
and  the  formation  of  free  radicals  [89].  An  interesting  computational  study
suggests  that  the  iron-ART  adduct  inhibits  PfATP6  through  an  allosteric
mechanism  [90].

Resistance to Artemisinin

In  view  of  its  fast  clinical  response  and  safety  profile,  ART  has  encountered
global application to treat uncomplicated and severe P. falciparum malaria, and
blood  stage  P.  vivax  infections.  However,  antimalarial  ART  monotherapy  was
soon considered inappropriate for more than one reason, including the frequency
of recrudescence cases, due to short plasma half-life, and the potential insurgence
of resistant parasites.

The  mechanism of  parasite  resistance  to  ART is  debated:  according to  in  vitro
experiments, it would be related to observed polymorphisms in the gene encoding
PfATP6  [91].  ART  resistance  across  several  Countries  in  Southeast  Asia  is
associated  with  mutations  in  kelch13  gene  (Pfk13)  sequences  encoding  the  β-
propeller and BTB/POZ domains, which lead to increased parasite survival rates
in response to DHA in vitro, and long parasite clearance half-lives in response to
ART treatment in vivo [92 - 94].
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Artemisinin Derivatives and Analogs

In  an  effort  to  improve  ART  properties  in  terms  of  efficacy,  resistance
susceptibility, selectivity indices, and particularly pharmacokinetic issues, several
cognate  drugs  have  been  developed  and  admitted  to  clinic  use.  The  synthetic
elaboration of these derivatives, starting from the historical artemether, arteether,
artesunate, to include artelinic acid, and the most recent analogs artemisone and
artemiside, has allowed for in-depth knowledge of their chemical properties, as
well as the establishment of key SARs.

The  first  generation  of  derivatives  obtained  through  modification  at  the  C-10
position  of  the  sesquiterpene  scaffold  was  essentially  designed  to  ameliorate
bioavailability. Reduction of the lactone carbonyl led to the corresponding lactol,
dihydroartemisinin (DHA) or artenimol 23, as a couple of epimeric hemiacetals at
C-10.  Derivative  23  is  three-to  five  fold  more  active  in  vitro  than  related
compounds, but is highly neurotoxic in humans at high doses, particularly the β-
hemiacetalic  adduct.  Compound  23  is  suitable  for  derivatization  with  either
lipophilic or hydrophilic functionalities derivatives, to afford compounds which in
vivo are mainly converted, albeit to different extents, to the neurotoxic metabolite
23.

Structure-activity  studies  on  derivatives  indicate  that  the  degree  of  residual
neuronal  toxicity  is  influenced  by  stereoisomerism  and  substitutions  at  the  10
position  of  the  ART backbone,  whilst  the  endoperoxide  is  a  necessary  but  not
sufficient determinant of neurotoxicity [95].

The  lipophilic  ether  derivatives  β-artemether  24  and  β-arteether  28  are  well
absorbed on intramuscular administration, whilst the hydrophilic artesunate, i.e.,
the  sodium  salt  of  the  lactol  hemi-succinate  derivative  (artesunic  acid  25),  is
suitable  for  intravenous  and  suppository  routes  [96].  When  administered
intramuscularly, owing to the ‘depot’ effect of their oily formulations, the lipid-
soluble 24 and 28 are released slowly and can cross the blood-brain barrier before
being  completely  metabolized  to  artenimol  [97].  On  the  contrary,  sodium
artesunate,  designed  to  be  intravenously  administered,  is  largely  hydrolyzed  in
plasma and the liver following entrance into the body. Despite this event, sodium
artesunate is actually the drug of choice among the group. Arteether may exist as
the C-10 β-epimeric form (β-arteether or artemotil 28) or α/β-arteether, a mixture
of  α-  and  β-diastereomers  at  a  ratio  of  30:70,  respectively.  Either  28  or  α/β-
arteether  can  be  used  in  the  treatment  of  severe  falciparum  malaria,  without  a
statistically significant difference between cure rates [98].

In general, the oral formulations of these drugs are not completely absorbed, and
their bioavailability is low, because of extensive first-pass metabolism in the liver.
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In  addition,  the  development  of  resistance  has  been documented,  and therefore
their use as monotherapies is not recommended.

Although  characterized  by  superior  antimalarial  activity  and  increased  lipid-
permeability/water  solubility  compared  to  the  lead  compound,  these  agents  are
still  affected  by  metabolic  instability,  short  half-lives,  and  questionable
neurotoxicity, since they represent pro-drugs of 23 [99]. Therefore, the emphasis
had to be placed on the development of derivatives incapable of providing this
active plasma metabolite.

In  this  regard,  sodium  artelinate  (Fig.  10).  was  shown  to  address  most  of  the
drawbacks of its precursors [100]. This water-soluble agent, namely the sodium
salt of artelinic acid 34, the β-hydroxymethylbenzoate ether of 23, was expected
to be resistant to liver metabolism, starting from the speculation that the benzoate
moiety would increase the steric hindrance of the drug, making the ether bond less
accessible to oxidative enzymes. Furthermore, its electron withdrawing effect on
the  ether  bond  would  further  increase  metabolic  stability.  Actually,  sodium
artelinate was found to possess a much longer plasma half-life than 24,  28  and
sodium artesunate. Despite controversial results, the molecule has been withdrawn
because of neurotoxicity concerns [101].

Fig. (10).  The sodium salt of artelinic acid 34.

A  similar  approach  has  been  pursued  by  O’Neill’s  group  with  the  elegant
incorporation of an ether-linked phenyl ring to block oxidative formation of 23in
vivo  [102].  Several  synthetic  approaches  have  been  previously  investigated  to
couple 23 with various phenols: by using boron trifluoride diethyl etherate catalys
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sis, the major product obtained was the anhydro derivative (AHA) in high yields.
This suggests the involvement of an oxonium ion Scheme (1). intermediate.

Scheme (1).  Classical synthetic route to C-10 phenoxy derivatives.

By  exploring  the  use  of  TMSOTf-AgClO4  catalysis  in  DHA-phenol  coupling
reactions,  good  chemical  yields  and  stereoselectivity  in  favor  of  the  β-isomers
were obtained. When tested in vitro against P. falciparum (HB3 and K1 strains),
all of the phenoxy-derivatives displayed IC50 values in the low nanomolar range,
comparable to that of 24. The p-trifluoromethyl-phenoxy derivative 35 (Fig. 11),
chosen for further biological evaluation on a rodent P. berghei model, disclosed
an outstanding in vivo antimalarial activity, equal to that of 23 and superior to that
of 24. Further studies conducted by the WHO also demonstrated that 35 is orally
active in mice with an ED50 of 2.7 mg/kg and an ED90 of 5.4 mg/Kg. Metabolic
studies on 34 assessed that the p-trifluoromethyl group on the phenyl ring actually
blocks oxidative de-arylation.

In  a  related  approach,  the  introduction  of  a  trifluoromethyl  group  in  C-10  to
improve  hydrolytic  stability  of  the  acetal  functionality  of  24  was  exploited,
leading  to  candidate  36,  which  was  found  ≈  33  times  more  stable  than  24  in
simulated stomach milieu and more active after intraperitoneal (ip) administration
in mice (ED50 value of 1.25 mg/Kg vs. ED50 = 2.5 mg/Kg for 24) [103].
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Fig. (11).  Compounds 35 and 36 as more stable C-10 derivatives of 24.

Ester derivatives of 23 at the C-10 position, incorporating biphenyl, adamantyl,
and fluorenyl groups as privileged lipophilic appendages, have been prepared via
acid chloride as  the  α-isomers  (compounds 37a-j  in  Scheme 2.),  and tested for
their antimalarial activity towards multi-drug resistant P. yoeli nigeriensis by oral
route in a murine model [104]. Several compounds in the series displayed a better
efficacy profile than β-arteether 28 and artesunic acid 25. In particular, ester 37i
was found to be more than twice as active as 28 and 25. It must be considered,
however, that whilst an increase in lipophilicity generally improves antimalarial
activity, it also enhances toxicity [105].

Scheme (2).  Preparation of lipophilic esters of 23.

The approaches to replace oxygen at the C-10 position with a carbon atom, to give
carba-analogues  (the  so-called  10-deoxoartemisinins),  have  been  developed  as
well,  with  the  aim to  enhance  hydrolytic  stability  and  reduce  toxicity.  Starting
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from aldehyde  38,  obtained  after  the  brilliant  synthetic  strategy  of  Ziffer  et  al.
[106], 10-deoxoartemisinins amine derivatives 39a-d, or esters 40a-c containing
water-soluble carboxylic groups Scheme (3). have been prepared [107]. Some of
the hydrophilic esters have been found to be about 25 times more potent than 22
against CQR clone (W-2) and 20 times towards the sensitive strain (Ghana) of P.
falciparum.  Comprehensive  literature  on  carba-analogs  is  available,  with  some
other relevant series reported [54].

Scheme (3).  Chemical approach to artemisinin C-10 carba-analogues.

An enhancement in activity was obtained by the replacement of oxygen at C-10
with  a  different  heteroatom,  such  as  nitrogen,  which  disclosed  the  class  of  10-
amino-artemisinins. This includes 10-aryl-amino derivatives, and 10-piperazine,
10-morpholine, and 10-thiomorpholine analogs, bearing a six-membered aliphatic
ring incorporating the C-10-linked nitrogen atom and a second heteroatom (N, O,
or S) (Fig. 12). 

(Fig. 12) contd.....
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Fig. (12).  10-amino-artemisinins.

10-Arylaminoartemisinins  have  been  designed  as  structural  analogs  of
arylglycosylamines  to  have acceptable  stability  at  pH 4,  thus  resulting  in  more
stability than artesunate. Among the 10-arylamino congeners prepared so far, the
p-fluorophenylamino derivative 41 was shown to be about 13 times more efficient
than  artesunate  in  vivo  against  P.  berghei  N  strain  after  subcutaneous  (sc)
administration,  and highly active by the same route towards CQR P. yoelii  NS
strain.  However,  activities  upon  oral  administration  are  of  the  same  order  of
magnitude  as  artesunate,  to  indicate  that  at  lower  pH,  as  in  the  case  of
glycosylamines,  protonation  of  the  basic  nitrogen  actually  occurs,  leading  to
hydrolysis  to  23  [108].

 



Antimalarial Endoperoxides: Medicinal Chemistry Lessons From Nature, Vol. 2   179

A  number  of  10-piperazine  derivatives  (compounds  42-44,  46-49)  and  the  10-
morpholine bioisostere 45 have been prepared to start from the trimethylsilyl ether
of  23:  subsequent  treatment  with  bromotrimethylsilane  and  then  an  excess  of
amine gives the 10 α-configurated amino compounds exclusively. In the murine
malaria models, the activity of 43-45 against CQS P. berghei and CQR P. yoelii
was shown to be notably high, and superior to those of ART, artesunate, and any
other peroxide-containing compound. However, the potent anti-malarial effect of
piperazine-substituted analogs 43 and 44 was suggested to be disconnected from
the ability to alkylate heme, since they were found relatively unreactive towards
free Fe(II). In the reactions involving free Fe(II), the authors hypothesized that the
piperazine  forms  a  complex  with  the  ferrous  ion,  and  the  amine-iron  complex
blocks the access of further iron to the peroxide bridge [109]. This conclusion was
countered by evidence reporting that  these derivatives  are  indeed potent  heme-
alkylating agents [110].

The thiomorpholine series has attained relevant results with artemiside 50 and its
S,S-dioxide analog artemisone 51 [111]. In comparison to sodium artesunate, 51
displays  higher  activity,  especially  against  multidrug-resistant  Plasmodium
parasites, and is more stable towards hydrolysis to 23, despite the presence of the
C-10 aminal group [112]. In animal experiments, 51 was about two to five times
more efficient than artesunate [113].

In view of their low-nanomolar activities against both drug-sensitive and mutant
asexual  parasites,  and  lack  of  neurotoxicity,  50  and  51  represent  promising
candidates  for  further  development  within  combination  therapies.  Quite
interestingly,  they  maintain  a  significant  efficacy  against  both  early-stage  and
mature gametocytes. Since these latter are regarded as metabolically hypoactive
stages, devoid of hemoglobin digesting pathways, it has been suggested that heme
is not required for activation of these 10-amino-artemisinins [114].

In addition to C-10 modifications, chemical derivatization at different positions,
such as C-3, C-4, C-9, and O-11, was investigated as well.

C-3  modified  analogs,  mainly  obtained  by  total  synthesis,  did  not  display  a
significant  activity  profile  in  comparison  to  cognate  leads;  based  on  its  good
aqueous  solubility,  compound  52  (Fig.  13).  was  tested  orally  in  P.  berghei-
infected mice against the congener artelinic acid 33, but it was found to be less
potent (ED50 value of 15 mg/Kg vs. ED50 = 9.6 mg/Kg for artelinic acid) [115].
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Fig. (13).  The C-3 modified artelinic acid congener 52.

Compounds 53a-c (Fig. 14). were designed by Posner’s group to get insights into
the  role  of  C-4  radicals  in  the  ART  plasmocidal  mechanism.  Indeed,  the
introduction of substituents, such as the benzyl group in 53b, which favor radical
formation  at  C-4,  resulted  in  better  antimalarial  activity,  while  potency  was
decreased by different groups leading to a major stabilization of the C-4 radical
(53c).  The  role  of  stereochemistry  at  C-4  was  also  assessed  for  better  activity,
based on the observation that the 1,5-H shift is favored in C-4 β-epimers [116].

Fig. (14).  C-4-substituted artemisinin congeners 53a-c.

The  available  C-9  modified  analogs  (Fig.  15).  come  from  two  different
assembling procedures: the C-9 β-aralkyl derivatives (such as 54) were prepared
through  Michael  addition  to  artemisitene  32  by  different  donors,  whilst  Δ9-
anhydro-compounds  (cf.55)  were  obtained  from  16-bromo-10-trifluoromet-
yl-anhydrodihydroartemisinin  through  direct  derivatization.  Compounds  in  the
first series were found remarkably active in a P. berghei-infected rodent model,
with  compound 54  displaying  the  most  significant  activity  (ED50  value  of  1.25
mg/Kg vs. ED50 = 2.4 mg/Kg for sodium artesunate) [117]. On the other side, in
the  related  group  55  has  emerged  as  a  highly  potent  antimalarial  compound  in
vivo  in  a  mice model,  dramatically  effective  in  reducing parasitemia (100% by
day  4,  after  both  oral  and  sc  route,  at  10  mg/Kg  dosing),  more  potent  than
artesunate  [118].
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Fig. (15).  Artemisinin C-9 derivatives.

Again,  the  bioisosteric  replacement  of  the  11-positioned  oxygen  atom  with
nitrogen paved the  way for  the  class  of  11-aza-artemisinins.  These  analogs  are
very attractive  since they incorporate  a  lactam unit  which is  more stable  under
acidic  and  basic  conditions  than  the  ART  lactone.  11-Aza-artemisinin  30  is
readily obtained from 22 and aqueous ammonia according to literature protocols
[119], however, only a limited number of derivatives can be made at the nitrogen
position, due to their amide nature.

N-methyl-11-aza-9-desmethylartemisinin 56 (Fig. 16). exhibited an almost five-
fold  increase  in  activity  compared  to  22  when  tested  in  vitro.  No  significant
improvement in potency was observed in the related N-alkyl,  N-phenyl, and N-
phenethyl series reported in the same study [120].

Fig. (16).  The simplest 11-aza-artemisinin analog.

A  series  of  N-sulfonyl  and  N-carbonyl-11-aza-artemisinins,  bearing  electron-
withdrawing  groups  whose  inductive  effects  would  influence  both  the  thermal

 

 
 

 



182   Medicinal Chemistry Lessons From Nature, Vol. 2 Grazia Luisi

stability  and  the  overall  physicochemical  properties  of  the  endoperoxide
derivatives,  was  made  synthetically  accessible  by  Haynes’  group  (compounds
57a-e and 58a,b in (Fig. 17) [121, 122].

Fig. (17). N-sulfonyl and N-carbonyl-11-aza-artemisinins.

11-Aza-artemisinin  30  itself  was  screened  against  W2  (CQR)  and  D6  (CQS)
strains,  with  respective  IC50  values  of  1.73  and  2.60  ng/mL.  The  carbonyl
derivatives  58  were  generally  more  active  as  antimalarials  than  arylsulfonyl
counterparts  57,  which  however  exhibited  good  activities,  being  similar  to
artesunate  against  the  drug-sensitive  3D7  clone  and  the  multidrug-resistant  K1
strain of P. falciparum. Despite its good antimalarial activity, compound 57b was
found  to  be  highly  cytotoxic,  due  to  its  significant  lipophilicity.  Quite
interestingly,  the remaining compounds exhibited improved solubility in water,
inability  to  provide  23  either  by  hydrolysis  or  metabolism,  and  also  enhanced
thermal stabilities, which may be ascribed to remote inductive effects raising the
(homolytic) bond dissociation energy of the peroxide bond. This would be a good
requisite for storage conditions in the endemic areas.

ART modifications with amine or hydrazine groups at this position have led to
new 11-aza derivatives (compounds 59-61 in Fig. 1) with reactive functionalities,
which have been exploited to generate a wide panel of compounds, characterized
in vivo by interesting activity against multidrug-resistant malaria [123].
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Fig.  (18).  N-Amino-11-aza-artemisinin  59,  N-hydroxy-11-aza-artemisin  60,  and  N-hydroxyethyl-11--
za-artemisin  61.

Artemisinin Combination Therapy

The strategy to combine an antimalarial drug with a partner agent presents major
challenges,  particularly in endemic areas.  These include the right  choice of  the
best-suited drug combinations, in terms of synergic efficacy and pharmacokinetic
profiles, cost of combination agents, and compliance.

Artemisinin combination therapy (ACT) was suggested as early as 1986 as a tool
to overcome treatment failures and mutually preserve coupled drugs from the risk
of resistance development [124 - 126]. The rationale behind this approach resides
in  associating  the  ART  fast  removal  of  a  large  fraction  of  parasites  with  the
persistent action of a second drug, characterized by an independent mechanism of
action  and  prolonged  half-life,  on  the  residual  parasite  biomass.  Since  the
publication of the first edition of The guidelines for the treatment of malaria in
2006, WHO has highly recommended ACT as the first-line treatment for CQR P.
falciparum  malaria  cases  in  endemic  areas.  The  WHO-endorsed  combinations
include  artesunate-amodiaquine,  artesunate-mefloquine,  artesunate-
sulfadoxine/pyrimethamine,  artemether-lumefantrine,  and  DHA-piperaquine
[127]. Artesunate-pyronaridine (Pyramax®) is the only ACT for the treatment of
acute P. vivax malaria.

Unfortunately,  since  its  first  appearance  in  2008  in  Western  Cambodia  [128],
resistance  to  ART  has  been  detected  in  many  other  countries,  and  the
phenomenon was shown to accelerate parasite resistance to partner drugs [129,
130]. For this reason, very recently, the ACT concept has been expanded with the
introduction  of  a  second,  long-lasting  auxiliary  drug  in  the  so-called  triple
artemisinin-based combination therapy (TACT) [131]. In analogy with therapeutic
protocols in use for treating multi-drug resistant infections such as AIDS or TBC,
it  was reasoned that the combination of more agents,  with different targets and
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resistance mechanisms, could reduce the probability for resistance to emerge to
any  of  these  components.  Of  course,  a  correct  TACT  approach  should  not
prescind from the appropriate choice and dosage of each individual component of
the  combination  in  terms  of  synergic  efficacy,  half-lives  and  pharmacokinetic
profiles, potential drug-drug interactions, safety, and tolerability.

Artemisinin Molecular Hybrids

Over the past decade, molecular hybridization or covalent bitherapy turned out to
be  a  powerful  approach  in  medicinal  chemistry  to  overcome  the  limitations  of
multi-component therapeutic regimens. The strategy involves the assemblage of
two or more molecules, acting by different mechanisms on the same or distinct
targets,  into  a  single  new  chemical  entity  containing  covalently  linked
pharmacophores.  The underlying rationale  goes beyond the simple grouping of
singular components to reach the synergic biological effect,  because the hybrid
compound expresses the potential of unprecedented properties with respect to the
precursors [132, 133]. Although of general application, for instance, in the therapy
of diseases such as cancer and AIDS, the hybridization approach is comparatively
new in the field of antimalarial drug discovery. At best, it is possible to combine
into a single agent all the desired multistage antiplasmodial activities, to redesign
a given drug if the toxicophore and the pharmacophore fragments of the molecule
are  not  overlapped,  or  to  arrange  the  nature  and  the  extension  of  the  linker
between the two moieties of the hybrid to probe the accessibility and the relative
proximity  of  the  reputed  cellular  targets.  A  number  of  potential  advantages  of
hybrids  over  ACTs  have  been  suggested,  including  mutual  protection  of  each
pharmacophoric  moiety  against  drug  resistance  development,  enhancement  of
solubility/stability of the more inadequate partner drug, and/or of the entire hybrid
molecule,  resulting  in  better  bioavailability,  a  decrease  of  synthetic  and
formulation costs, improvement of selectivity profile with reduction of undesired
drug-drug  interactions  and  adverse  side  effects,  and  amelioration  of  patient
compliance.  However,  the  real  advantages  of  the  hybrid  over  the  separate
pharmacophores should always be verified. The hybridization approach has been
exploited on several current antimalarial drugs, in search of novel bioactive agents
with distinct pharmacological profiles [134 - 136].

The relevance of artemisinins in present clinical protocols against CQR malaria
strains led to the exploration of several ART-based hybrid compounds with the
potential of a superior antimalarial activity in comparison to component drugs. In
most  cases,  they  are  simple  conjugates,  in  which  the  pharmacophores  for  each
target are separated by a metabolically stable fragment, that is not present in either
of the individual drugs, or cleavage conjugates, containing a linker unit designed
to be metabolized to release the drugs at each independent target. Further, in the
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so-called  fused  hybrids,  the  linker  is  minimized  in  such  a  way  that  the
pharmacophores  are  essentially  touching  [137].  Lastly,  merged  hybrids  take
advantage of the structural resemblance of the starting compounds to give rise to
smaller molecules in which the two scaffolds are closely intermingled (Fig. 19).

Fig. (19).  Different hybridization approaches (a) conjugate hybrid; (b) cleavage conjugate hybrid; (c) fused
hybrid; (d) merged hybrid.

As previously discussed, currently used artemisinins are known to undergo in vivo
enzymatic,  oxidative  dealkylation  and  are  easily  hydrolysed  into  23,  which
represents  their  principal  metabolite  and  the  supposed  causative  agent  of
neurotoxicity  [138];  although  endowed  with  potent  antimalarial  activity,  23  is
characterized by high chemical and thermal instability, as well as poor solubility.
Since  the  hemiacetalic  nature  of  the  C-10  adduct  accounts  for  the  chemical,
stereochemical  [139],  and  metabolic  lability  of  the  molecule,  to  address  these
drawbacks, different ART-derived hybrids have been developed with the common
strategy to transform the lactol at C-10 into a more stable functionality, through
both direct or spacer-mediated covalent linkage to the partner motif.
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The hybrid by definition, i.e., the ART-quinine conjugate 62, was assembled by
coupling  23  to  a  carboxylic  acid  derivative  of  quinine  1,  obtained  through
modification of the non-essential vinyl moiety of the quinuclidine nucleus, thus
introducing an acetal  ester  connection (Fig.  20).  The logic underneath was that
coupling the lipophilic, fast-acting, but quickly cleared ART to the slow-acting,
relatively polar quinine derivative might increase the half-life of the ART moiety.
The hybrid displayed significant activity in vitro against both CQS (3D7; IC50 =
0.008 μM) and CQR (FcB1; IC50 = 0.009 μM) strains of P. falciparum, resulting
in more potent than 22 and 1 tested as individual drugs on the same strains, and
about 3-fold superior compared to a 1:1 mixture (on a molecular basis) of these
two  drugs  [140].  This  suggested  that  the  actions  of  both  quinine  and  ART
components  were  preserved.

Fig. (20).  The artemisinin-quinine hybrid 62.

Molecular  interactions  and binding affinity  of  the  ART-quinine  conjugate  (and
some related hybrids)  with iron(II)-protoporphyrin-IX as  a  putative target  have
been evaluated in  silico  [141].  The model  involves  a  close interaction between
heme iron (II) and the endoperoxide oxygen couple of the ART moiety, with the
more negatively  charged O-2 preferred over  the  sterically  hindered O-1.  These
results are in agreement with docking studies performed by Shukla et al. [142].
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Coming soon after for significance, the artemisinin-chloroquine (ART-CQ) hybrid
has been developed. From a conceptual point of view, this molecule falls into the
class  of  trioxaquines,  conjugates  obtained  by  covalent  attachment  of  a  1,2,4-
trioxane  pharmacophore  to  an  aminoquinoline  moiety.  They  were  designed  by
Meunier  and  co-workers  as  dual-mode  twin  drugs,  in  which  the  trioxane
alkylating properties are combined with the quinoline ability to easily penetrate
within infected erythrocytes and inhibit the β-hematin polymerization [143, 144].
The  result  is  the  fast  removal  of  the  bulk  of  parasite  load  by  the  ART
pharmacophore,  sustained  by  the  quinoline  moiety  clearance  of  the  survival
parasite,  until  complete  plasmocidal  effect  is  achieved.

The CQ nucleus, truncated in its 4-alkylamino chain, has been linked to either 23,
25, or artelinic acid 33, and the resulting classes screened for their antiplasmodial
activity in comparison to individual components.

In the first group of conjugates (compounds 63-68 in Fig. (1), the linkage of the
alkylamino  quinoline  appendage  enables  the  stabilization  of  the  23  C-10
hemiacetalic adduct in the form of an ether derivative (acetal), more stable in vivo
than an ester, adding in the meantime a basic nitrogen functionality, suitable for
salt formation.

When  tested  in  vitro  on  P.  falciparum  CQS  D10  and  CQR  Dd2  strains,
compounds 63, 64, and 68 in the form of oxalate salts, and 66 as both free base
and salt, were found equipotent to CQ 5 against the D10 strain, and more potent
than CQ against the CQR Dd2 strain, with IC50 in the two-digit nanomolar range
[145]. In general, the oxalates were found to be more active than their free base
hybrids, presumably due to their higher aqueous solubility in the testing medium.
An optimum chain length of 2/3 carbon atoms has been identified, with or without
an extra methyl substituent. Hybrid 66 and its oxalate salt were the most active
ones against the Dd2 strain, being 9- and 7-fold more active than 5, respectively
(17.12 nM; 20.76 nM vs 157.9 nM). However, despite an increase in half-life with
respect to 23, hybrids were less active than the reference drug, irrespective of the
P.  falciparum  strain.  In  vivo  hybrids  66  and  63  displayed  potent  anti-malarial
efficacy  against  P.  vinckei,  with  ED50  values  of  1.1  mg/kg  by  ip  route,  and  12
mg/Kg per os for hybrid 66, and 1.4 mg/kg and 16 mg/Kg by ip and oral route,
respectively (compound 63). Long-term monitoring of parasitaemia showed that
hybrids 63  and 66  are completely curative in P. vinckei  infected mice (without
recrudescence) via both ip (15 mg/kg) and oral (50 mg/kg) routes, with no visible
sign of toxicity at higher doses (up to 50 mg/kg) [146].
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Fig. (21).  DHA-CQ conjugates 63-68.

The  artesunic  acid  conjugate  69  reported  in  Fig.  (1)  is  an  artemisinin-based
trioxaquine possessing potent antiplasmodial activity in vitro against CQS (D6)
(IC50,  6.89  ng/mL)  and  CQR  (W2)  (IC50,  3.62  ng/mL)  P.  falciparum  strains,
corroborated  by  a  remarkable  in  vivo  effect  against  blood  stage  rodent  malaria
parasite (ED50 and ED90 of 5.5 and 13.5 mg/kg, respectively) [147]. When tested
in  a  human  cerebral  malaria  (CM)  mice  model,  the  hybrid  displayed  a  higher
efficacy  compared  to  individual  precursors  alone  (artesunate  and  4,7-dichlor-
-quinoline) and quinine 1 chosen as controls. The very encouraging post-treatment
survival  data  in  the  trioxaquine-treated  group  compared  to  that  receiving  iv
artesunate alone was suggested to depend upon the contribution of the quinoline
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pharmacophore in sequestering the ART-related partner in the DV, thus extending
its half-life [148].

Fig. (22).  Structure of N-(7-chloroquinolin-4-ylamino)-ethyl-artesunate-19-carbossammide 69.

The strictly related study by Tsogoeva and co-workers reported about the smart
synthesis  and  biological  evaluation  of  artesunate/DHA-quinoline  and  -
isoquinoline  hybrids,  including  the  previously  reported  conjugate  69  (Fig.  23)
[149]. This outstanding work investigated SARs of linker-units, generated through
copper(I)-catalyzed  azide-alkyne  cycloaddition  (CuAAC)  click  chemistry  (for
triazole derivatives 70-78), classical coupling reactions (for esters and amides 79-
81 and 69), and a novel rearrangement of the in situ formed tertiary amide to the
secondary  amide  (for  the  alkyne-tagged  compound  82).  All  the  investigated
hybrids displayed potent activities in the nanomolar to picomolar range against
the  P.  falciparum  wild-type  strain  3D7  and  the  two  multidrug-resistant  strains
Dd2 and K1. In the artesunate derivatives 79, 80, and 69, the gradual replacement
of H-bond acceptor oxygen atoms by H-bond donor nitrogens in the linker units
led, as expected, to a remarkable increase in activity, with the most outstanding
hybrid 69 showing EC50 values of 2.7 nM, 1.0 nM and 780 pM against 3D7, Dd2,
and  K1  strains,  respectively.  Furthermore,  compound  80  was  found  to
exceptionally  suppress  parasitemia  in  a  P.  berghei  infected-mice  model,  upon
both sc and oral administration, being superior to artesunate.
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Fig.  (23).   Exploring  the  linker  spatial  and  electronic  requirements  in  potent  artesunate/DHA  quinoline
hybrids.

Finally,  using  a  chemical  proteomics  approach,  the  authors  selected  the  highly
active alkyne-tagged hybrids 81 and 82 to identify a set of parasite proteins, such
as PfATP6 (responsible for ART action) and the 40S ribosomal protein machinery
(classically recognized for quinoline effect), to support the hypothesis that hybrids
act by multiple modes of action to overcome resistance.
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Conjugates embodying artelinic acid 33 (compounds 83-85 in Fig. 24 were built
employing  an  Ugi  four-component  condensation  based  on  the  one-step
combination  of  33,  the  4-amino-quinoline  amine,  paraformaldehyde,  and
cyclohexyl  or  tert-butyl  isocyanide  as  the  isocyanide  component  amide.  The
reported compounds displayed an excellent in vitro antiplasmodial activity against
the  CQS  D10  and  CQR  K1  isolates  of  P.  falciparum,  which  resulted  in
comparable  to  that  of  5  used  as  a  control  [150].

Fig. (24).  Artelinic acid-chloroquine hybrids 83-85.

Furthermore,  biological  experiments  were  conducted  to  disclose  the  prevailing
mechanism by which the hybrids are able to prevent hemoglobin endocytosis by
the parasite, to assess if their mechanism of action is more similar to that of CQ or
ART: in fact, whereas CQ is thought to block the fusion of hemoglobin transport
vesicles  to  the  DV,  ART  rather  reduces  the  amount  of  hemoglobin-filled
endocytic vesicles. The obtained results suggested a more ART-like action for the
hybrid compounds.

The prototype of  the  liver  schizonticidal  drug,  primaquine 7,  was selected as  a
partner  drug  in  a  few  ART-based  hybrids.  The  underlying  rationale  is  to  take
advantage of 7 abilities to eliminate the parasite in its liver and sexual stages and
to disrupt disease transmission [151]. Conjugate 86  illustrated in Fig. (25).  was
obtained starting from artelinic aldehyde, in turn, prepared from 33, followed by
reductive amination using 7 and NaBH3CN. Again, the bioisosteric replacement

 



192   Medicinal Chemistry Lessons From Nature, Vol. 2 Grazia Luisi

of an oxygen atom with a CH2 unit, which converts the canonical lactol ring of 23
in  a  tetrahydropyrane  nucleus,  allows  the  most  versatile  functionalizations  in
position  10,  as  illustrated  for  hybrid  87  in  Fig.  (26).,  which  contains  a  deoxy-
acetyl artesunic acid moiety. In vitro evaluation of reported hybrids disclosed that
they are actually superior to 7 against P. falciparum W2 strains (IC50 = 0.0125 and
0.0091 μM, respectively).  Furthermore,  the activity of  both compounds against
cultured  P.  falciparum  was  comparable  to  that  of  22  (50%  inhibitory
concentration  [IC50],  ~10  nM).  More  interestingly,  the  conjugates  displayed
enhanced in vitro activities against liver-stage P. berghei compared to their parent
drugs.

Fig. (25).  Artelinic acid-primaquine conjugate 86, reduced at the CONH linker moiety.

Fig. (26).  Hybridization of primaquine and deoxy-acetyl artesunic acid (compound 87).

 

 



Antimalarial Endoperoxides: Medicinal Chemistry Lessons From Nature, Vol. 2   193

The same approach has guided the design of ART/quinacrine hybrids (Fig. 27).,
prepared  by  joining  the  9-aminoacridine  unit  of  quinacrine  (also  known  as
mepacrine)  with  a  metabolically  stable  ART  analogue,  through  a  C-10  carba-
linkage  and  the  interposition  of  an  alkyl-diamine  linker  of  appropriate  length
[152, 153]. When tested in vitro against P. falciparum strains, all the hybrids were
found active in the nanomolar range: the most potent compounds were 88, derived
from deoxy-acetyl artesunate (IC50 = 5.96 nM against CQS 3D7 strains), and 89
(3D7, IC50 = 12.52 nM; CQR K1 isolates, IC50 = 14.34 nM), both characterized by
an  ethylene  spacer.  Despite  the  presence  of  the  basic  polyamine  spacer,  which
should  favor  the  accumulation  within  the  acidic  DV  through  an  ion-trapping
mechanism,  the  hybrids  are  not  superior  to  24,  suggesting  that  other  targets
outside the DV, such as PfATP6, may be more important for this class of chimeric
molecules.

Fig. (27).  Artemisinin-quinacrine hybrids.

Artesunate  is  the  common  anionic  component  of  two  hybrid  salts,  namely
mefloquine-artesunate  (MEFAS)  90  and  primaquine-artesunate  (PRIMAS)  91
(Fig. 28), incorporating mefloquine 2 and primaquine 7 in the protonated forms as
respective counterions.
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Fig. (28).  MEFAS and PRIMAS salts (90 and 91, respectively).

When tested for antimalarial activity, 90 was proven quite promising against CQR
(W2) and CQS (3D7) P. falciparum parasites, resulting in at least five times more
potent than 2 alone, more active than artesunate against 3D7 and equally effective
against  W2,  and  superior  to  different  combinations  of  artesunate  and  2.
Furthermore,  90  was  found  in  vitro  more  effective  than  its  components  taken
alone  in  blocking  the  final  steps  of  P.  falciparum  gametocyte  maturation.
Additionally,  a  curative  action  in  P.  berghei  experimentally  infected  mice  was
assessed, with no recrudescence observed in the long period. By altering the pH
gradient across the parasite DV, this hybrid salt is suggested to have a dual mode
of action, i.e., the endoplasmic reticulum and DV. Because of its ability to target
both  asexual  parasites  and  gametocytes,  the  low toxicity  and  cheap  production
costs,  MEFAS  represents  a  valuable  alternative  anti-malarial  drug  in  endemic
zones [154].

Developed with the aim to reduce primaquine toxicity, PRIMAS 91 was found in
vivo and in vitro more active and less toxic than the individual drugs [155, 156].

The  molecular  hybridization  approach  was  successfully  exploited  by  linking
artesunic  acid  or  its  deoxy-acetyl  derivative  to  the  quinazoline  nucleus,
considering  that  the  latter  scaffold  is  one  of  the  most  studied  in  medicinal
chemistry,  and,  more  importantly,  is  contained  in  febrifugine.  This  naturally
occurring  alkaloid  was  isolated  60  years  ago  from  the  Chinese  plant  aseru
(Dichroa febrifuga Lour), and has been used as an antimalarial agent in traditional
Chinese medicine for over 2000 years. The five novel ART-quinazoline hybrids
reported in the study (compounds 92-96 in Fig. 29. exhibit excellent antimalarial
activity  against  the  P.  falciparum  3D7  strain,  with  EC50  values  within  the
nanomolar  range  (EC50  =  1.4–39.9  nM).  The  most  active  compounds  are
compounds 92 (EC50 = 3.8 nM) and 95 (EC50 = 1.4 nM), which are superior to 25
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(EC50 = 9.7 nM). Remarkably, hybrid 95 is even more active than 23 (EC50 = 2.4
nM) and 5 (EC50 = 9.8 nM). An analysis of the structure-activity relationships of
ART-quinazoline conjugates disclosed that the C-10 acetal linkage seems to be
beneficial  for  antimalarial  activity.  Furthermore,  an  opportunely  functionalized
aromatic subunit needs to be encompassed, whilst the secondary amine group of
the 4-anilino-quinazoline moiety  should be left  untouched,  worth  a  decrease in
activity [157].

Fig. (29).  Molecular hybrids of artesunic acid 25 and its deoxy-acetyl congeners with quinazoline.
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On account of its wide range of pharmacological applications, thymoquinone, the
main constituent of the volatile oil of Nigella sativa (black seed), is emerging as a
promising natural drug. Several ART-thymoquinone hybrids were assembled and
tested  in  vitro  against  P.  falciparum  3D7  strains  and  compared  to  their  parent
compounds 25/23  and thymoquinone,  as  well  as  the standard drug 5  [158].  All
hybrids  exhibited  excellent  antimalarial  activities,  with  EC50  values  within  the
nanomolar  range  (3.7-54  nM)  combined  with  a  low  toxicity/high  selectivity
profile. Ether-linked 97b (Fig. 30). was proven to be the most effective one (EC50
= 3.7 nM), superior to 25 (EC50 = 8.2 nM in this study) and 5 (EC50 = 9.8 nM), and
comparable to 23 (EC50 = 2.4 nM).

Fig. (30).  Potent artemisinin-thymoquinone hybrids.

An elegant application of covalent bitherapy involving artemisinin was exploited
with  the  rational  design  of  nitric  oxide  (NO)-donor  hybrid  drugs,  obtained  by
joining the scaffolds of 25 or 23 with NO-donor moieties, to treat cerebral malaria
[159] (compounds 98 and 99 in (Fig. 31). The basis for this original approach is
the finding that low availability of NO, consequent to the NO-scavenging effects
by  high  concentrations  of  free  oxyhemoglobin  derived  from  malaria-related
hemolysis,  plays  an  important  role  in  the  pathogenesis  of  human  and  murine
experimental  cerebral  malaria,  and  that  the  neurological  syndrome  and  the
associated  cerebrovascular  dysfunction  can  be  prevented  by  administration  of
NO-donors. The in vitro and in vivo antiplasmodial activity of hybrid compounds
98  and  99  towards  a  transgenic  P.  berghei  ANKA (PbA)  clone  expressing  the
green fluorescent protein (GFP) as a tag (PbA-GFP) was in the low nanomolar
range,  comparable  to  that  of  artesunate.  Furthermore,  hybrid  99  was  found  to
behave as a good vasodilator agent at low micromolar concentration. It contains
the  NO-donor  1,2,5-oxadiazole-2-oxide  (furoxan)  substructure  present  in  CAS
1609 (4-hydroxymethyl-3-furoxancarboxamide), an in vivo effective, long-lasting
vasodilator agent. Following administration of hybrid 99, mice with experimental
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cerebral  malaria  showed  a  survival  rate  of  51.6%,  which  was  markedly  higher
compared to  the  survival  rate  in  the  group of  artemether-treated mice  (27.5%).
Thus, great potential  can be envisaged for this new class of compounds, which
retain the rapid parasite killing activity of the parent and the cerebrovascular flow
restoring properties of the NO-donor moieties.

Fig. (31).  Conjugates 98 and 99, built by linking 25 or 23, respectively, with NO-donor moieties.

In light of the role of Plasmodium cysteine proteases, such as falcipains and other
papain-family proteases, in the host (hemo)globin digestion [160] in the DV, and
capitalizing  on  the  known inhibitory  effect  of  chalcones  on  cysteine  proteases,
DHA[REMOVED HYPERLINK FIELD]-chalcone hybrids were synthesized to
be tested in vitro as antimalarial agents (Fig. 32) [161]. Conjugates were prepared
through the esterification of  substituted chalcones with the C-10 hemiacetal  23
group,  using  either  1,1'-carbonyldiimidazole  as  a  coupling  reagent,  or  oxalyl
chloride as activation reagent. The hybrid compounds were all found to be active
against CQS (3D7) and CQR (W2) P. falciparum strains, with IC50 values in the
nanomolar  range  against  both  strains  (1.9-10.7  nM,  and  1.6-10.6  nM,
respectively).  The  antiplasmodial  activity  was  increased  by  the  presence  of
electron donating, oxygenated aryl or furan scaffolds as B ring of the chalcone
moiety,  independently  of  the  substituent  position.  Accordingly,  compounds
100-102  were proven to be almost equipotent to 23,  and 2-3 times more active
than artesunate against the 3D7 and W2 strains; furthermore, they were more than
forty-fold more effective than 5 against the W2 strain of the malaria parasite. The
chemical binding of chalcone and DHA pharmacophores into hybrids resulted in
no significant advantage compared to 23 alone or in 1:1 molar ratio combinations
of  the  two  agents,  suggesting  an  antagonistic  rather  than  a  synergistic  effect,
probably  related  to  their  high  log  P  values,  low solubility  and  poor  absorption
levels.  Nevertheless,  all  the  esters  showed  remarkable  selectivity  indices  in
targeting intraerythrocytic P. falciparum parasites compared to mammalian cells,
and increased thermal stability with respect to 23.
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Fig. (32).  DHA-chalcone hybrids.

Much interest  resides in hybrid compounds incorporating a (2R,3S)-N-benzoyl-
3-phenylisoserine moiety coupled to an ART scaffold via ester linkage (Fig. 33)
[162].

Fig. (33).  DHA hybrids incorporating a paclitaxel fragment.
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The  rationale  motivating  the  designed  compounds  is  that  (2R,3S)-N-benzoyl-
3-phenylisoserine  is  a  structural  component  of  the  antimicrotubular  drug
paclitaxel  (a  taxol),  which  owns  antimalarial  efficacy  in  addition  to  its  strong
well-known antitumor activity [163]. Hybrids 103a and 103b differ only for the
presence  or  absence  of  acetylation  of  the  isoserine  hydroxyl  group.  Tested
compounds  showed  in  vitro  a  quite  similar  antiplasmodial  profile,  resulting
equipotent to 23 against CQR W2 strain and approximately 3-4 times more active
than the same drug against the multidrug-resistant K1 P. falciparum isolate. Thus,
a  potential  synergistic  interaction  between  the  ART  and  the  isoserine
pharmacophores  for  antiplasmodial  activity  was  suggested.

Artemisinin Dimers and Trimers

The acknowledged connection between the endoperoxide structural requisite and
ART anti-malarial activity has prompted researchers to exploit the pharmacophore
duplication  approach,  connecting  two  identical  entities  through  spacers  of
convenient  length  and  flexibility,  to  improve  the  pharmacological  effect.  The
rationale to dimerize ART originates from several considerations: (i) covalently
linked pharmacophores are simultaneously uptaken into the cells, thus giving rise
to multiple copies of the drug available at the target level, which corresponds to a
concentration enhancement, particularly useful for a short half-life agent such as
ART; (ii) the bivalent dimer may establish binding interaction with independent
recognition sites of a receptor or multivalent binding to different protein targets;
(iii) binding affinities are likely enhanced in respect to a monomeric moiety.

Based on these issues, over the last 20 years, the ART dimerization approach has
been widely investigated in medicinal chemistry to design systems that could be
more  stable  under  metabolic  conditions,  and  consequently  less  prone  to  give
recrudescence  phenomena  and  toxic  events  compared  to  monomers.

The  efficacy  of  ART  dimers  is  strictly  dependent  upon  the  correct  distance
between the two ART moieties, and consequently, the linkers’ features, such as
length and conformational flexibility, play a crucial role. An outstanding review
on  synthetic  approaches  to  ART  dimers,  containing  a  large  variety  of  both
symmetric and non-symmetric linker units, is currently in press [164]. Apart from
the length and flexibility of the spacer arm, in these adducts, the stereochemistry
at  the  C-10  position  is  crucial  for  dimer  activity,  and  accordingly,  different
attachment  points  of  linkers  to  the  ART  scaffold  have  been  explored.

Novel  ART hybrids,  including also dimers,  were obtained by linking ART and
triazine pharmacophores (compounds 104-109  in Fig. (35) with the adoption of
microwave  synthetic  techniques.  Notably,  under  radiation  conditions,  the  ART
endoperoxide bridge was found preserved [165].
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Fig. (34).  Triazine conjugates with monomeric and dimeric artemisinin scaffolds.

The 1,3,5-triazine moiety is a common structure present in antifolate drugs (such
as  cycloguanil),  which  interfere  in  the  tetrahydrofolate  (THF)  biosynthetic
pathway  by  inhibiting  dihydrofolate  reductase  (DHFR).  In  each  reported
compound,  the  triazine  nucleus  is  substituted  in  positions  2,4,6  with  three
different groups; the one including an ethylendiamine arm is the common linker
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unit to the single (hybrid monomers) or doubled (hybrid dimers) ART scaffold.
All synthesized compounds were screened against the P. falciparum multidrug-
sensitive  NF54  strain,  and  the  CQ-  and  mefloquine-resistant  Dd2  strain.  With
regards to the NF54 strain, which is the strain of choice for testing gametocidal
activity, all hybrid monomers and dimers were found to be less potent than both
23 and artesunate, although they were up to six thousand-folds more active than
pyrimethamine.  No  synthesized  compound  showed  better  activity  than  the
equimolar combination of 23 and pyrimethamine. This observation suggests that
the  triazine  moiety  may  exert  an  antagonistic  effect  on  the  ART  gametocydal
action. On the opposite, dimers 105, 107, and 109 displayed potencies comparable
to  those  of  23,  artesunate  and  the  DHA-pyrimethamine  equimolar  mixture
towards the Dd2 strain. However, all of the investigated hybrids were more potent
than pyrimethamine against the same isolate. Again, 105 and 109 displayed a high
level of selective toxicity towards the parasitic cells. More significantly, dimeric
adducts  proved  to  be  slightly  more  active  than  their  corresponding  hybrid
monomers against both the NF54 and Dd2 strains, probably as the result of more
ART pharmacophore units reaching the site of action.

As prosecution of his pioneering work on ART-quinoline hybrids, Lombard and
his  group  developed  DHA-4-aminoquinoline  dimers  110  and  111  (Fig.  35).,
which feature a  diaminopropane arm connecting 4-amino-7-chloro-quinoline to
the two ethyl ether linked-DHA scaffolds directly,  like in hybrid-dimer 110,  or
through interposition of a piperazine ring (compound 111). Dimeric hybrids 110
and  111  displayed  low  nanomolar  in  vitro  antimalarial  activity  against  the  P.
falciparum 3D7 strain, similar to that previously observed against D10 and Dd2
strains,  in  comparison  with  23  and  5  as  standards.  Further  investigated  in  a  P.
vinckei-infected mice model, both compounds were shown to decrease parasitemia
to extremely low levels [166, 167].

Fig. (35).  DHA-aminoquinoline dimers 110 and 111 reported by Lombard’s group.
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An interesting series  of  ART dimers  and trimers  was masterly  synthesized and
screened for activity against the P. falciparum 3D7 strain, in comparison with the
single  counterparts  artesunate  and  23  (compounds  112-117  in  Fig.  (36)  [168].
Although the antiplasmodial effectiveness of hybrids 112 and 113 (IC50 value of
2.6 nM for both) was higher than their parent compound 25  (IC50  = 9.0 nM), it
was slightly lower when compared to 23  (IC50  = 2.5 nM). Interestingly,  dimers
112 and 113 were considerably more effective than trimers 114 and 115 (IC50 of
12.8 nM for both) against the malaria parasite 3D7 strain. Chemically, they were
obtained starting by either ART-derived acids or alcohols, in some cases with the
interposition of spacer units with amine functions, linked by means of ester-, ether
or amide bonds.
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Fig. (36).  Artemisinin dimers and trimers.

Beyond dimers and trimers, also ART tetramers, based on the rationale of adding
as many peroxide moieties as possible to extend antimalarial activity, have been
developed and thoroughly described [169].

1,2-DIOXANE-,  1,2-DIOXOLANE-,  1,2,4-TRIOXANE-,  1,2,4-
TRIOXOLANE-,  AND  1,2,4,5-TETRAOXANE-BASED  SYNTHETIC
ENDOPEROXIDES  AS  ANTIMALARIAL  CANDIDATES

One of the most unquestionable innovations in malaria chemotherapy has been the
development of synthetic endoperoxide-containing drugs.

The definite statement that the crucial pharmacophoric moiety in the natural drug
is  represented  by  the  1,2,4-trioxane  annular  system  has  driven  research  into
related endoperoxides, particularly 1,2,4-trioxane-, 1,2,4-trioxolane-, and 1,2,4,5-
tetraoxan-based  scaffolds,  for  developing  novel  antimalarial  agents  to  be  used
against resistant parasites [170, 171]. Synthetic endoperoxides have been widely
explored in an effort to preserve the potential of the iron(II)-catalyzed hemolytic
cleavage  of  the  peroxide  bond  in  return  for  simpler  structures  and  more  cost-
effective synthetic strategies in respect to artemisinins.
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Dioxanes and Dioxolanes

The finding that yingzhaousu A 118, a phytochemical endoperoxide isolated from
Artabotrys uncinatus, owns good antimalarial activity despite the simplified 1,2-
dioxane  skeleton,  has  prompted  the  investigation  of  synthetic  1,2-dioxanes
(exemplified by arteflene 119, Ro-42-1611) and 1,2-dioxolanes, which all feature
an  endoperoxide  bond  constrained  within  a  rigid,  albeit  simpler,  skeleton.  1,2-
dioxane  119  was  progressed  by  Hoffmann-LaRoche  as  a  stable  analogue  of
yingzhaosu A Scheme (4), and although its suppressive activity is comparable to
CQ in uncomplicated malaria, its development was discontinued after Phase III
trials owing to high recrudescent rates, and long synthetic protocols [172].

Scheme (4).  Development of 1,2-dioxane-based arteflene 119 from the natural product yingzhaousu A 118.

A dispiro-1,2-dioxolane series (compounds 120a-l in Fig. 37 was synthesized by
the Vennerstrom’s group via peroxycarbenium ion annulations with alkenes; the
most active 1,2-dioxolane 120f was found more than 1000-fold less effective than
dispiro-1,2,4-trioxolane 121 (Fig. 37). and 22 against the CQR K1 and CQS NF54
strains  of  P.  falciparum  [173].  Furthermore,  in  vivo,  only  120f  exhibited  a
reduction in parasitemia that exceeded 50% in a P. berghei ANKA strain-infected
murine model.

 
 

 



Antimalarial Endoperoxides: Medicinal Chemistry Lessons From Nature, Vol. 2   205

Fig. (37).  Synthetic dispiro-1,2-dioxolanes 120a-l, and dispiro-1,2,4-trioxolane 121 strictly related to 120a.

The  reported  1,2-dioxanes  and  1,2-dioxolanes  are  typically  one  order  of
magnitude  less  potent  than  their  poly-oxygenated  counterparts;  it  has  been
suggested that the observed preference of these compounds to undergo a reduction
of the peroxide bond by a two-electron pathway may enhance the pool of inactive
species (the diol forms). Such behavior was observed for both arteflene 119 [174,
175] and the achiral 1,2-dioxolane 120a, containing the oxygenated ring flanked
by a spiroadamantane cage and a spirocyclohexane [173], in a model mimicking
Fe(II)-catalysed  decomposition  of  the  peroxide  unit.  Furthermore,
biopharmaceutical profile of 1,2-dioxanes and 1,2-dioxolanes is conditioned by
short half-lives, due to instability, and poor physical-chemical properties. In this
respect,  1,2,4-trioxanes,  1,2,4-trioxolanes,  and  1,2,4,5-tetraoxanes  hold  greater
promise.

TRIOXANES AND TRIOXOLANES

Trioxanes

Several  synthetic  1,2,4-trioxanes  have  been  investigated,  many  of  which
displayed low nanomolar antiplasmodial activity in vitro  (compounds 122a-i  in
Fig. (35). These compounds, featuring tricyclic or bicyclic scaffolds as proof that
certain ART rings are not essential for activity, have greatly contributed to detail
SARs [116, 176] and plasmocidal mechanism of action of endoperoxides. Classes
of simpler spirocyclic 1,2,4-trioxanes, including a geraniol derivative, have been
investigated for their ability to suppress parasitemia, with the 2-spiroadamantyl
derivatives  proven  to  be  the  most  effective  in  regard  to  antimalarial  activity.
Despite this, interest in them has vanished, probably due to the greater large-scale
synthetic viability and drug potential of 1,2,4-trioxolanes and 1,2,4,5-tetraoxans.
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Fig. 38.  The most relevant 1,2,3-trioxane antimalarial compounds representing structural simplification of
artemisinin.

However,  the  class  of  fenozans,  spirocyclic  compounds  containing  a  cis-fuse-
-ciclopentene-1,2,4-trioxane scaffold, deserves to be mentioned. Although sharing
very little structural similarity with 22, the difluorinated fenozan B07 123 (Fig.
39) has evidenced potent in vitro and in vivo antimalarial activity, which has been
linked to the formation of primary carbon-centered radical species [177, 178].
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Fig. 39.  The structure of fenozan B07 123.

Trioxolanes

1,2,4-Trioxolanes  or  ozonides  (OZs)  are  a  well-known  class  of  intermediate
organic compounds in the ozonolytic transposition of olefins into carbonyls. Since
the surprising discovery of their excellent antimalarial activity, 1,2,4-trioxolanes
have  been  the  subject  of  wide  interest,  and  thanks  to  the  unceasing  work  of
Vennerstrom’s  group,  a  huge  number  of  OZs  have  been  developed  using  the
convenient  Griesbaum  co-ozonolysis  reaction  of  suitable  methyl  oximes  and
ketones,  and  subsequent  functionalization  steps  [179,  180].  In  the  dispiro-1,2,-
-trioxolane series (compounds 124a-k in Fig. (40), the presence of an adamantane
nucleus, connected to the 1,2,4-trioxolane ring through a spiro-perketalic carbon,
and  a  spirocyclohexyl  group  on  the  other  side  have  been  found  essential  for
antimalarial  activity  [181  -  183].  In  the  most  active  compounds,  the  lipophilic
adamantane  scaffold  is  counterbalanced  by  polar  functional  groups,  preferably
basic in nature [184]. Most OZ compounds have been shown to be more active
than 24  and artesunate both in vitro  and in vivo,  and are able to target multiple
stages of the parasite cycle.

(Fig. 40) contd.....
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Fig. 40.  Dispiro-1,2,4-trioxolane-based antimalarials 124a-k.

Fig. (41).  Dispiro-1,2,4-trioxolanes OZ277 125 (arterolane), OZ339 126, and OZ439 127 (artefenomel).

 

 

 

The most promising candidates in the ozonide series are OZ277 125 (arterolane),
OZ339 126,  and OZ439 127  (artefenomel)  (Fig.  41).  With  regard to  arterolane
125, the trioxolane peroxide bond and the cyclohexyl group substituent in 8’ are
cis-configurated; despite the 8’-cis and 8’-trans diastereomers have been shown to
be equipotent in vitro, 125 was found 40 times more active in vivo in respect to its
8’-trans  diastereoisomer,  owing  to  a  longer  half-life  and  greater  oral
bioavailability. Studies on conformational equilibria of the two diastereoisomers
have found a rationale for this different behavior: the 8’-cis substituent favors a
conformer in which the peroxide bond adopts an axial position, which is sterically
hindered  and  less  exposed  to  degradation  in  vivo  [185].  Ozonide  125  has  been
registered in India in combination with piperaquine and was recently approved in
seven African Countries [186].
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As  far  as  OZ339  126  is  concerned,  the  1,2,4-trioxolane  was  tested  in  a
comparative  P.  berghei-infected  mice  study  including  125,  with  artesunate  as
control.  This  potent  ozonide  was  found  to  possess  the  highest  antimalarial
efficacy, with excellent survival time, due to a better pharmacokinetic profile with
respect to 125 [182].

The  most  encouraging  drug-like  molecule  is  artefenomel  127,  obtained  by
replacement of the 8’-cis-positioned cyclohexyl ring with an 8’-aryl nucleus. This
modification resulted in slower elimination compared with ART derivatives and
the  first-generation  ozonide  125,  making  the  candidate  adapt  for  single-dose
treatment.  1,2,4-Trioxolane  127  is  a  fast-acting  inhibitor  of  all  asexual
erythrocytic  P.  falciparum  stages;  furthermore,  it  maintains  strong  antimalarial
activity in infections carrying the Pfk13 propeller mutations, which are strongly
related to ART resistance [187].

Tetraoxanes

Finally,  the  development  of  antimalarial  candidates  containing  the  1,2,4,5-
tetraoxane ring has been actively pursued. Largely used in industrial production of
macrocyclic  hydrocarbons,  in  the  early  1990s,  symmetrical  dispiro-1,2,4,-
-tetraoxanes  as  simple  as  128,  containing  the  1,2,4,5-tetraoxacyclohexane  core
(Fig.  42),  were  discovered  to  possess  impressive  in  vitro  antimalarial  activity
[188]. Due to achirality and inherent thermodynamic stability as well [189], 128
has been chosen as the key scaffold of a series of both symmetric and asymmetric
disubstituted derivatives. An expected advantage of these compounds is they can
be easily  synthesized by acid-catalyzed peroxidation of  widely available  cyclic
ketones,  followed  by  subsequent  incorporation  of  polar  functionalities,  via
reductive  amination  and  amide  bond  formation.

Fig. (42).  The simplest dispiro-1,2,4,5-tetraoxane with potent antimalarial activity.

In the mixed dicyclohexylidene compounds (compounds 129a-d, 130a-c, 131a-f,
and  132a-d  in  Fig.  (43),  the  aim  was  to  achieve  the  minimal  amphiphilic
structures to minimize the effect of steric effects on antimalarial mechanism. This
series is characterized by similar in vitro nanomolar activities against both CQS
and CQR P. falciparum strains, disregarding the nature of the substituent (neutral,
polar, or basic) [190 - 192].
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Again,  the  incorporation  of  a  spiroadamantyl  substituent,  compared  to  other
groups,  resulted  in  superior  effectiveness  against  both  CQS  and  CQR  P.
falciparum  isolates.  In  order  to  augment  water  solubility  and  optimize  the
biopharmaceutical profiles of these candidates, the highly lipophilic nature of the
adamantyl scaffold was finely tuned by adding polar groups at the other end, such
as the sulfonamide unit (compounds 133a-c), or mainly basic appendages at the
C-9’ position (compounds 134a,b) [193].

Fig. (43).  Mixed amphiphilic tetraoxanes.

Through endless research, O’Neill’s group developed other promising candidates
[194,  195].  RKA182 135  (Fig.  44).  was  reported  as  a  metabolically  stable  and
potent derivative, being superior to artemether 24 and artesunate, and comparable
to artemisone 51,  in both in vitro  and in vivo  assays. Unfortunately, it  failed to
reach  the  requirements  of  a  single-dose  treatment,  and  its  full  preclinical
development  has  been  discontinued.
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Fig. (44).  The molecule of RKA182.

From a  wide  library  of  135  analogs  developed  by  the  same group in  search  of
more  balanced  ADME  properties,  no  candidate  emerged  in  the  amide-linked
series. Finally, SAR studies on a new class of aryloxy-containing tetraoxanes, led
to the discovery of E209 136 (Fig. 45). as the front-runner molecule in regard to
curing  rates  in  the  P.  berghei  model  and  initial  Drug  Metabolism  and
PharmacoKinetics  (DMPK)  investigation.  E209  displays  potent  nanomolar
activity in vitro against multiple strains of P. falciparum and P. vivax (mean IC50
range 2.9/14.0 nM), and complete P. falciparum clearance in vivo achievable with
a single oral dose of 30 mg/kg, with a calculated ED90 of 11.6 mg/kg (cf. ED90 of
10  mg/kg for artesunate, following four consecutive daily doses, corresponding to
total 50 mg/kg) [196].

Fig. (45).  The molecule of E209.

Further,  chimeric  peroxide  compounds  with  other  drugs,  preferably
aminoquinolines  (trioxaquine  derivatives),  have  been  widely  investigated  and
thoroughly  reviewed  [197].
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The  alkylation  of  heme  by  synthetic  peroxides  has  been  assessed,  and  their
alkylation ability correlates well with their antimalarial efficacy. Most probably,
however,  they do not fit  into a unique mechanism of action;  single compounds
could target  parasites  at  multiple sites,  or  exert  their  antiplasmodial  activity by
causing oxidative stress [198].

CONCLUSION

The  golden  age  of  antimalarial  therapy  has  been  marked  by  the  discovery  and
application  of  artemisinin  as  a  new  curative  agent  towards  the  most  severe  P.
falciparum  infection  presentations.  This  natural  endoperoxide-containing
antimalarial has captured a great deal of attention since its introduction, due to a
combination  of  outstanding  potency,  safety,  and  unique  mechanism  of  action.
Nevertheless, acknowledged drawbacks, mainly concerning the pharmacokinetic
profile  and  the  risk  of  emerging  resistant  parasites,  have  initially  oriented  the
scientific community towards the structural modification and simplification of this
truly  fascinating  drug,  and  the  use  of  combination  therapies  to  provide  a
prolonged,  synergistic  activity  and avoid resistance.  Synthetic  approaches have
also allowed for in-depth knowledge of chemical properties of artemisinin-related
compounds, as well as the establishment of fundamental SARs. Research interest
culminated in the discovery of more effective drugs, offering advantages in terms
of  chemical  stability,  synthetic  feasibility  and  costs.  The  most  promising
therapeutic  option  is  by  far  represented  by  the  plethora  of  endoperoxide-based
synthetic antimalarials, with more than a few currently under clinical evaluation.
In view of their structural diversity and synthetic feasibility, in the near future, we
should expect that endoperoxide scaffolds (1,2,4-trioxane-, 1,2,4-trioxolane- and
1,2,4,5-teraoxane-based)  and  their  chemical  analogs,  including  chimeric
molecules, will represent the richer source of drug-like candidates for a cogent,
safe, and cost-effective treatment of malaria. This developmental strategy would
benefit from molecular design and in silico optimization studies, as well as from
bioavailability and toxicity assays.
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